|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- /*
- * This file is part of Aptdec.
- * Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019
- *
- * Aptdec is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <https://www.gnu.org/licenses/>.
- *
- */
-
- #include <stdio.h>
- #include <string.h>
- #include <sndfile.h>
- #include <math.h>
-
- #include "offsets.h"
- #include "messages.h"
-
- #define REGORDER 3
- typedef struct {
- double cf[REGORDER + 1];
- } rgparam;
-
- extern void polyreg(const int m, const int n, const double x[], const double y[], double c[]);
-
- // Compute regression
- static void rgcomp(double x[16], rgparam * rgpr) {
- // { 0.106, 0.215, 0.324, 0.433, 0.542, 0.652, 0.78, 0.87, 0.0 }
- const double y[9] = { 31.07, 63.02, 94.96, 126.9, 158.86, 191.1, 228.62, 255.0, 0.0 };
-
- polyreg(REGORDER, 9, x, y, rgpr -> cf);
- }
-
- // Convert a value to 0-255 based off the provided regression curve
- static double rgcal(float x, rgparam *rgpr) {
- double y, p;
- int i;
-
- for (i = 0, y = 0.0, p = 1.0; i < REGORDER + 1; i++) {
- y += rgpr->cf[i] * p;
- p = p * x;
- }
- return(y);
- }
-
- static double tele[16];
- static double Cs;
- static int nbtele;
-
- void histogramEqualise(float **prow, int nrow, int offset, int width){
- // Plot histogram
- int histogram[256] = { 0 };
- for(int y = 0; y < nrow; y++)
- for(int x = 0; x < width; x++)
- histogram[(int)floor(prow[y][x+offset])]++;
-
- // Find min/max points
- int min = -1, max = -1;
- for(int i = 5; i < 250; i++){
- if(histogram[i]/width/(nrow/255.0) > 1.0){
- if(min == -1) min = i;
- max = i;
- }
- }
-
- //printf("Min Value: %i, Max Value %i\n", min, max);
-
- // Spread values to avoid overshoot
- min -= 5; max += 5;
-
- // Stretch the brightness into the new range
- for(int y = 0; y < nrow; y++)
- for(int x = 0; x < width; x++)
- prow[y][x+offset] = (prow[y][x+offset]-min) / (max-min) * 255;
- }
-
- // Brightness calibrate, including telemetry
- void calibrateBrightness(float **prow, int nrow, int offset, int width, int telestart, rgparam regr[30]){
- offset -= SYNC_WIDTH+SPC_WIDTH;
-
- for (int n = 0; n < nrow; n++) {
- float *pixelv = prow[n];
-
- for (int i = 0; i < width+SYNC_WIDTH+SPC_WIDTH+TELE_WIDTH; i++) {
- float pv = pixelv[i + offset];
-
- // Blend between the calculated regression curves
- /* TODO: this can actually make the image look *worse*
- * if the signal has a constant input gain.
- */
- int k, kof;
- k = (n - telestart) / FRAME_LEN;
- if (k >= nbtele)
- k = nbtele - 1;
- kof = (n - telestart) % FRAME_LEN;
-
- if (kof < 64) {
- if (k < 1) {
- pv = rgcal(pv, &(regr[k]));
- } else {
- pv = rgcal(pv, &(regr[k])) * (64 + kof) / FRAME_LEN +
- rgcal(pv, &(regr[k - 1])) * (64 - kof) / FRAME_LEN;
- }
- } else {
- if ((k + 1) >= nbtele) {
- pv = rgcal(pv, &(regr[k]));
- } else {
- pv = rgcal(pv, &(regr[k])) * (192 - kof) / FRAME_LEN +
- rgcal(pv, &(regr[k + 1])) * (kof - 64) / FRAME_LEN;
- }
- }
-
- pv = CLIP(pv, 0, 255);
- pixelv[i + offset] = pv;
- }
- }
- }
-
- // Get telemetry data for thermal calibration/equalization
- int calibrate(float **prow, int nrow, int offset, int width) {
- double teleline[3000] = { 0.0 };
- double wedge[16];
- rgparam regr[30];
- int n, k;
- int mtelestart = 0, telestart;
- int channel = -1;
-
- // Calculate average of a row of telemetry
- for (n = 0; n < nrow; n++) {
- float *pixelv = prow[n];
-
- // Average the center 40px
- for (int i = 3; i < 43; i++) teleline[n] += pixelv[i + offset + width];
- teleline[n] /= 40.0;
- }
-
- // The minimum rows required to decode a full frame
- if (nrow < 192) {
- fprintf(stderr, ERR_TELE_ROW);
- return(0);
- }
-
- /* Wedge 7 is white and 8 is black, which will have the largest
- * difference in brightness, this will always be in the center of
- * the frame and can thus be used to find the start of the frame
- */
- double max = 0.0;
- for (n = nrow / 3 - 64; n < 2 * nrow / 3 - 64; n++) {
- float df;
-
- // (sum 4px below) / (sum 4px above)
- df = (teleline[n - 4] + teleline[n - 3] + teleline[n - 2] + teleline[n - 1]) /
- (teleline[n + 0] + teleline[n + 1] + teleline[n + 2] + teleline[n + 3]);
-
- // Find the maximum difference
- if (df > max) {
- mtelestart = n;
- max = df;
- }
- }
-
- // Find the start of the first frame
- telestart = (mtelestart - FRAME_LEN/2) % FRAME_LEN;
-
- // Make sure that theres at least one full frame in the image
- if (nrow < telestart + FRAME_LEN) {
- fprintf(stderr, ERR_TELE_ROW);
- return(0);
- }
-
- // For each frame
- for (n = telestart, k = 0; n < nrow - FRAME_LEN; n += FRAME_LEN, k++) {
- float *pixelv = prow[n];
- int j;
-
- // Turn each wedge into a value
- for (j = 0; j < 16; j++) {
- // Average the middle 6px
- wedge[j] = 0.0;
- for (int i = 1; i < 7; i++) wedge[j] += teleline[(j * 8) + n + i];
- wedge[j] /= 6;
- }
-
- // Compute regression on the wedges
- rgcomp(wedge, &(regr[k]));
-
- // Read the telemetry values from the middle of the image
- if (k == nrow / (2*FRAME_LEN)) {
- int l;
-
- // Equalise
- for (j = 0; j < 16; j++) tele[j] = rgcal(wedge[j], &(regr[k]));
-
- /* Compare the channel ID wedge to the reference
- * wedges, the wedge with the closest match will
- * be the channel ID
- */
- float min = 10000;
- for (j = 0; j < 6; j++) {
- float df;
-
- df = tele[15] - tele[j];
- df *= df;
- if (df < min) {
- channel = j;
- min = df;
- }
- }
-
- // Cs computation, still have no idea what this does
- int i;
- for (Cs = 0.0, i = 0, j = n; j < n + FRAME_LEN; j++) {
- double csline;
-
- for (csline = 0.0, l = 3; l < 43; l++)
- csline += pixelv[l + offset - SPC_WIDTH];
-
- csline /= 40.0;
- if (csline > 50.0) {
- Cs += csline;
- i++;
- }
- }
- Cs /= i;
- Cs = rgcal(Cs, &(regr[k]));
- }
- }
- nbtele = k;
-
- calibrateBrightness(prow, nrow, offset, width, telestart, regr);
-
- return(channel + 1);
- }
-
- // --- Temperature Calibration --- //
- extern int satnum;
- #include "satcal.h"
-
- typedef struct {
- double Nbb;
- double Cs;
- double Cb;
- int ch;
- } tempparam;
-
- // IR channel temperature compensation
- static void tempcomp(double t[16], int ch, tempparam *tpr) {
- double Tbb, T[4];
- double C;
-
- tpr -> ch = ch - 4;
-
- // Compute equivalent T blackbody temperature
- for (int n = 0; n < 4; n++) {
- float d0, d1, d2;
-
- C = t[9 + n] * 4.0;
- d0 = satcal[satnum].d[n][0];
- d1 = satcal[satnum].d[n][1];
- d2 = satcal[satnum].d[n][2];
- T[n] = d0;
- T[n] += d1 * C;
- C = C * C;
- T[n] += d2 * C;
- }
- Tbb = (T[0] + T[1] + T[2] + T[3]) / 4.0;
- Tbb = satcal[satnum].rad[tpr->ch].A + satcal[satnum].rad[tpr->ch].B * Tbb;
-
- // Compute radiance blackbody
- C = satcal[satnum].rad[tpr->ch].vc;
- tpr->Nbb = c1 * C * C * C / (expm1(c2 * C / Tbb));
-
- // Store count blackbody and space
- tpr->Cs = Cs * 4.0;
- tpr->Cb = t[14] * 4.0;
- }
-
- // IR channel temperature calibration
- static double tempcal(float Ce, tempparam * rgpr) {
- double Nl, Nc, Ns, Ne;
- double T, vc;
-
- Ns = satcal[satnum].cor[rgpr->ch].Ns;
- Nl = Ns + (rgpr->Nbb - Ns) * (rgpr->Cs - Ce * 4.0) / (rgpr->Cs - rgpr->Cb);
- Nc = satcal[satnum].cor[rgpr->ch].b[0] +
- satcal[satnum].cor[rgpr->ch].b[1] * Nl +
- satcal[satnum].cor[rgpr->ch].b[2] * Nl * Nl;
-
- Ne = Nl + Nc;
-
- vc = satcal[satnum].rad[rgpr->ch].vc;
- T = c2 * vc / log1p(c1 * vc * vc * vc / Ne);
- T = (T - satcal[satnum].rad[rgpr->ch].A) / satcal[satnum].rad[rgpr->ch].B;
-
- // Rescale to 0-255 for -60'C to +40'C
- T = (T - 273.15 + 60.0) / 100.0 * 256.0;
-
- return(T);
- }
-
- // Temperature calibration wrapper
- void temperature(float **prow, int nrow, int ch, int offset){
- tempparam temp;
-
- printf("Temperature... ");
- fflush(stdout);
-
- tempcomp(tele, ch, &temp);
-
- for (int n = 0; n < nrow; n++) {
- float *pixelv = prow[n];
-
- for (int i = 0; i < CH_WIDTH; i++) {
- float pv = tempcal(pixelv[i + offset], &temp);
-
- pv = CLIP(pv, 0, 255);
- pixelv[i + offset] = pv;
- }
- }
- printf("Done\n");
- }
|