You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

преди 20 години
преди 21 години
преди 20 години
преди 21 години
преди 20 години
преди 21 години
преди 20 години
преди 21 години
преди 20 години
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. /* ---------------------------------------------------------------------------
  2. Polynomial regression, freely adapted from :
  3. NUMERICAL METHODS: C Programs, (c) John H. Mathews 1995
  4. Algorithm translated to C by: Dr. Norman Fahrer
  5. NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
  6. Prentice Hall, International Editions: ISBN 0-13-625047-5
  7. This free software is compliments of the author.
  8. E-mail address: in%"mathews@fullerton.edu"
  9. */
  10. #include<math.h>
  11. #define DMAX 5 /* Maximum degree of polynomial */
  12. #define NMAX 10 /* Maximum number of points */
  13. static void FactPiv(int N, double A[DMAX][DMAX], double B[], double Cf[]);
  14. void
  15. polyreg(const int M, const int N, const double X[], const double Y[],
  16. double C[])
  17. {
  18. int R, K, J; /* Loop counters */
  19. double A[DMAX][DMAX]; /* A */
  20. double B[DMAX];
  21. double P[2 * DMAX + 1];
  22. double x, y;
  23. double p;
  24. /* Zero the array */
  25. for (R = 0; R < M + 1; R++)
  26. B[R] = 0;
  27. /* Compute the column vector */
  28. for (K = 0; K < N; K++) {
  29. y = Y[K];
  30. x = X[K];
  31. p = 1.0;
  32. for (R = 0; R < M + 1; R++) {
  33. B[R] += y * p;
  34. p = p * x;
  35. }
  36. }
  37. /* Zero the array */
  38. for (J = 1; J <= 2 * M; J++)
  39. P[J] = 0;
  40. P[0] = N;
  41. /* Compute the sum of powers of x_(K-1) */
  42. for (K = 0; K < N; K++) {
  43. x = X[K];
  44. p = X[K];
  45. for (J = 1; J <= 2 * M; J++) {
  46. P[J] += p;
  47. p = p * x;
  48. }
  49. }
  50. /* Determine the matrix entries */
  51. for (R = 0; R < M + 1; R++) {
  52. for (K = 0; K < M + 1; K++)
  53. A[R][K] = P[R + K];
  54. }
  55. /* Solve the linear system of M + 1 equations : A*C = B
  56. for the coefficient vector C = (c_1,c_2,..,c_M,c_(M+1)) */
  57. FactPiv(M + 1, A, B, C);
  58. } /* end main */
  59. /*--------------------------------------------------------*/
  60. static void FactPiv(int N, double A[DMAX][DMAX], double B[], double Cf[])
  61. {
  62. int K, P, C, J; /* Loop counters */
  63. int Row[NMAX]; /* Field with row-number */
  64. double X[DMAX], Y[DMAX];
  65. double SUM, DET = 1.0;
  66. int T;
  67. /* Initialize the pointer vector */
  68. for (J = 0; J < N; J++)
  69. Row[J] = J;
  70. /* Start LU factorization */
  71. for (P = 0; P < N - 1; P++) {
  72. /* Find pivot element */
  73. for (K = P + 1; K < N; K++) {
  74. if (fabs(A[Row[K]][P]) > fabs(A[Row[P]][P])) {
  75. /* Switch the index for the p-1 th pivot row if necessary */
  76. T = Row[P];
  77. Row[P] = Row[K];
  78. Row[K] = T;
  79. DET = -DET;
  80. }
  81. } /* End of simulated row interchange */
  82. if (A[Row[P]][P] == 0) {
  83. /* The matrix is SINGULAR ! */
  84. return;
  85. }
  86. /* Multiply the diagonal elements */
  87. DET = DET * A[Row[P]][P];
  88. /* Form multiplier */
  89. for (K = P + 1; K < N; K++) {
  90. A[Row[K]][P] = A[Row[K]][P] / A[Row[P]][P];
  91. /* Eliminate X_(p-1) */
  92. for (C = P + 1; C < N + 1; C++) {
  93. A[Row[K]][C] -= A[Row[K]][P] * A[Row[P]][C];
  94. }
  95. }
  96. } /* End of L*U factorization routine */
  97. DET = DET * A[Row[N - 1]][N - 1];
  98. /* Start the forward substitution */
  99. for (K = 0; K < N; K++)
  100. Y[K] = B[K];
  101. Y[0] = B[Row[0]];
  102. for (K = 1; K < N; K++) {
  103. SUM = 0;
  104. for (C = 0; C <= K - 1; C++)
  105. SUM += A[Row[K]][C] * Y[C];
  106. Y[K] = B[Row[K]] - SUM;
  107. }
  108. /* Start the back substitution */
  109. X[N - 1] = Y[N - 1] / A[Row[N - 1]][N - 1];
  110. for (K = N - 2; K >= 0; K--) {
  111. SUM = 0;
  112. for (C = K + 1; C < N; C++) {
  113. SUM += A[Row[K]][C] * X[C];
  114. }
  115. X[K] = (Y[K] - SUM) / A[Row[K]][K];
  116. } /* End of back substitution */
  117. /* Output */
  118. for (K = 0; K < N; K++)
  119. Cf[K] = X[K];
  120. }