@@ -30,7 +30,7 @@
#include "offsets.h"
#include "offsets.h"
#include "palette.h"
#include "palette.h"
extern int getpixelrow(float *pixelv);
extern int getpixelrow(float *pixelv, int nrow, int *zenith );
extern int init_dsp(double F);
extern int init_dsp(double F);
static SNDFILE *inwav;
static SNDFILE *inwav;
@@ -77,119 +77,185 @@ static png_text text_ptr[] = {
{PNG_TEXT_COMPRESSION_NONE, "Description", "NOAA satellite image", 20}
{PNG_TEXT_COMPRESSION_NONE, "Description", "NOAA satellite image", 20}
};
};
// TODO: this function needs to be tidied up
/* Effects
* 0 - Nothing
* 1 - Crop telemetry
* 2 - False color
* 3 - Layered
*/
static int ImageOut(char *filename, char *chid, float **prow, int nrow, int width, int offset, png_color *palette, int effects) {
int mapOverlay(char *filename, float **crow, int nrow, int zenith, int MCIR) {
FILE *fp = fopen(filename, "rb");
// Create reader
png_structp png = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if(!png) return 0;
png_infop info = png_create_info_struct(png);
if(!info) return 0;
png_init_io(png, fp);
// Read info from header
png_read_info(png, info);
int width = png_get_image_width(png, info);
int height = png_get_image_height(png, info);
png_byte color_type = png_get_color_type(png, info);
png_byte bit_depth = png_get_bit_depth(png, info);
// Check the image
if(width != 1040){
fprintf(stderr, "Map must be 1040px wide.\n");
return 0;
}else if(bit_depth != 16){
fprintf(stderr, "Map must be 16 bit color.\n");
return 0;
}else if(color_type != PNG_COLOR_TYPE_RGB){
fprintf(stderr, "Map must be RGB.\n");
return 0;
}else if(zenith > height/2 || nrow-zenith > height/2){
fprintf(stderr, "WARNING: Map is too short to cover entire image\n");
}
// Create row buffers
png_bytep *mapRows = NULL;
mapRows = (png_bytep *) malloc(sizeof(png_bytep) * height);
for(int y = 0; y < height; y++) mapRows[y] = (png_byte *) malloc(png_get_rowbytes(png, info));
// Read image
png_read_image(png, mapRows);
// Tidy up
fclose(fp);
png_destroy_read_struct(&png, &info, NULL);
int mapOffset = (height/2)-zenith;
for(int y = 0; y < nrow; y++) {
for(int x = 49; x < width - 82; x++){
// Maps are 16 bit / channel
png_bytep px = &mapRows[CLIP(y + mapOffset, 0, height)][x * 6];
uint16_t r = (uint16_t)(px[0] << 8) | px[1];
uint16_t g = (uint16_t)(px[2] << 8) | px[3];
uint16_t b = (uint16_t)(px[4] << 8) | px[5];
// Pointers to the current pixel in each channel
float *cha = &crow[y][(x+36) * 3];
float *chb = &crow[y][(x+CHB_OFFSET-49) * 3];
// Fill in map
if(MCIR){
// Sea
cha[0] = 42; cha[1] = 53; cha[2] = 105;
// Land
if(g > 128){
float vegetation = (r-160) / 96.0;
cha[0] = 120; cha[1] = vegetation*60.0 + 100; cha[2] = 95;
}
}
// Color -> alpha: composite
int composite = r + g + b;
// Color -> alpha: flattern color depth
float factor = (255 * 255 * 2.0) / composite;
r *= factor; g *= factor; b *= factor;
// Color -> alpha: convert black to alpha
float alpha = CLIP(abs(0 - composite) / 65535.0, 0, 1);
// Map overlay on channel A
cha[0] = MCOMPOSITE(r/257, alpha, cha[0], 1);
cha[1] = MCOMPOSITE(g/257, alpha, cha[1], 1);
cha[2] = MCOMPOSITE(b/257, alpha, cha[2], 1);
// Map overlay on channel B
if(!MCIR){
chb[0] = MCOMPOSITE(r/257, alpha, chb[0], 1);
chb[1] = MCOMPOSITE(g/257, alpha, chb[1], 1);
chb[2] = MCOMPOSITE(b/257, alpha, chb[2], 1);
}
// Cloud overlay on channel A
if(MCIR){
float cloud = (chb[0] - 110) / 120;
cha[0] = MCOMPOSITE(240, cloud, cha[0], 1);
cha[1] = MCOMPOSITE(250, cloud, cha[1], 1);
cha[2] = MCOMPOSITE(255, cloud, cha[2], 1);
}
}
}
return 1;
}
// Row where to satellite reaches peak elevation
int zenith = 0;
static int ImageOut(char *filename, char *chid, float **prow, int nrow, int width, int offset, char *palette, char *effects, char *mapFile) {
FILE *pngfile;
FILE *pngfile;
png_infop info_ptr;
png_structp png_ptr;
// Reduce the width of the image to componsate for the missing telemetry
// Reduce the width of the image to componsate for the missing telemetry
if(effects == 1) width -= TOTAL_TELE;
if(CONTAINS(effects, 't') ) width -= TOTAL_TELE;
// Initalise the PNG writer
png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
// Create writer
png_structp png_ ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (!png_ptr) {
if (!png_ptr) {
png_destroy_write_struct(&png_ptr, (png_infopp) NULL);
fprintf(stderr, ERR_PNG_WRITE);
fprintf(stderr, ERR_PNG_WRITE);
return(0);
return(0);
}
}
// Metadata
info_ptr = png_create_info_struct(png_ptr);
png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr) {
if (!info_ptr) {
png_destroy_write_struct(&png_ptr, (png_infopp) NULL);
png_destroy_write_struct(&png_ptr, (png_infopp) NULL);
fprintf(stderr, ERR_PNG_INFO);
fprintf(stderr, ERR_PNG_INFO);
return(0);
return(0);
}
}
extern void falsecolor(float vis, float temp, float *r, float *g, float *b);
if(effects == 2){
// 8 bit RGB image
png_set_IHDR(png_ptr, info_ptr, width, nrow,
8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
}else if(palette == NULL) {
// Greyscale image
png_set_IHDR(png_ptr, info_ptr, width, nrow,
8, PNG_COLOR_TYPE_GRAY, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
} else {
// Palleted color image
png_set_IHDR(png_ptr, info_ptr, width, nrow,
8, PNG_COLOR_TYPE_PALETTE, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
png_set_PLTE(png_ptr, info_ptr, palette, 256);
}
// 8 bit RGB image
png_set_IHDR(png_ptr, info_ptr, width, nrow,
8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
text_ptr[1].text = chid;
text_ptr[1].text = chid;
text_ptr[1].text_length = strlen(chid);
text_ptr[1].text_length = strlen(chid);
png_set_text(png_ptr, info_ptr, text_ptr, 3);
png_set_text(png_ptr, info_ptr, text_ptr, 3);
png_set_pHYs(png_ptr, info_ptr, 4000, 4000, PNG_RESOLUTION_METER);
if(effects == 2){
printf("Computing false color & writing: %s", filename);
}else{
printf("Writing %s", filename);
}
fflush(stdout);
png_set_pHYs(png_ptr, info_ptr, 4160, 4160, PNG_RESOLUTION_METER);
// Init I/O
pngfile = fopen(filename, "wb");
pngfile = fopen(filename, "wb");
if (pngfile == NULL) {
if (!pngfile) {
fprintf(stderr, ERR_FILE_WRITE, filename);
fprintf(stderr, ERR_FILE_WRITE, filename);
return(1);
return(1);
}
}
png_init_io(png_ptr, pngfile);
png_init_io(png_ptr, pngfile);
png_write_info(png_ptr, info_ptr);
png_write_info(png_ptr, info_ptr);
for (int n = 0; n < nrow; n++) {
png_color pix[width];
png_byte pixel[width];
// Move prow into crow, crow ~ color rows
float *crow[3000];
for(int i = 0; i < nrow; i++){
crow[i] = (float *) malloc(sizeof(float) * 2080 * 3);
float *pixelv = prow[n];
int f = 0;
for (int i = 0; i < width; i++) {
// Skip parts of the image that are telemetry
if(effects == 1){
switch (i) {
case 0:
f += SYNC_WIDTH + SPC_WIDTH;
break;
case CH_WIDTH:
f += TELE_WIDTH + SYNC_WIDTH + SPC_WIDTH;
break;
case CH_WIDTH*2:
f += TELE_WIDTH;
}
}
for(int x = 0; x < 2080; x++)
crow[i][x*3 + 0] = crow[i][x*3 + 1] = crow[i][x*3 + 2] = prow[i][x];
}
if(effects == 2){
float r = 0, g = 0, b = 0;
falsecolor(pixelv[i+CHA_OFFSET], pixelv[i+CHB_OFFSET], &r, &g, &b);
pix[i].red = r;
pix[i].green = g;
pix[i].blue = b;
}else if(effects == 3){
// Layered image, overlay clouds in channel B over channel A
float cloud = CLIP(pixelv[i+CHB_OFFSET]-141, 0, 255)/114;
pixel[i] = MCOMPOSITE(240, cloud, pixelv[i+CHA_OFFSET], 1);
}else{
pixel[i] = CLIP(pixelv[i + offset + f], 0, 255);
}
if(mapFile != NULL && mapFile[0] != '\0'){
if(mapOverlay(mapFile, crow, nrow, zenith, strcmp(chid, "MCIR") == 0) == 0){
fprintf(stderr, "Skipping MCIR generation; see above.\n");
return 0;
}
}
}else if(strcmp(chid, "MCIR")){
fprintf(stderr, "Skipping MCIR generation; no map provided.\n");
return 0;
}
if(effects == 2){
png_write_row(png_ptr, (png_bytep) pix);
}else{
png_write_row(png_ptr, pixel);
printf("Writing %s", filename);
// Build RGB image
for (int n = 0; n < nrow; n++) {
png_color pix[width];
for (int i = 0; i < width; i++) {
float *px = &crow[n][offset*3 + i*3];
pix[i].red = CLIP(px[0], 0, 255);
pix[i].green = CLIP(px[1], 0, 255);
pix[i].blue = CLIP(px[2], 0, 255);
}
}
png_write_row(png_ptr, (png_bytep) pix);
}
}
// Tidy up
png_write_end(png_ptr, info_ptr);
png_write_end(png_ptr, info_ptr);
fclose(pngfile);
fclose(pngfile);
printf("\nDone\n");
printf("\nDone\n");
@@ -223,10 +289,10 @@ static void distrib(char *filename, float **prow, int nrow) {
for(int y = 0; y < 256; y++)
for(int y = 0; y < 256; y++)
distrib[y][x] = distrib[y][x] / max * 255;
distrib[y][x] = distrib[y][x] / max * 255;
ImageOut(filename, "Brightness distribution", distrib, 256, 256, 0, NULL, 0);
ImageOut(filename, "Brightness distribution", distrib, 256, 256, 0, NULL, 0, NULL );
}
}
extern int calibrate(float **prow, int nrow, int offset, int width, int calibrate );
extern int calibrate(float **prow, int nrow, int offset, int width);
extern void histogramEqualise(float **prow, int nrow, int offset, int width);
extern void histogramEqualise(float **prow, int nrow, int offset, int width);
extern void temperature(float **prow, int nrow, int ch, int offset);
extern void temperature(float **prow, int nrow, int ch, int offset);
extern int Ngvi(float **prow, int nrow);
extern int Ngvi(float **prow, int nrow);
@@ -240,8 +306,7 @@ int satnum = 4;
static void usage(void) {
static void usage(void) {
printf("Aptdec [options] audio files ...\n"
printf("Aptdec [options] audio files ...\n"
"Options:\n"
"Options:\n"
" -e [c|t] Enhancements\n"
" c: Contrast calibration\n"
" -e [t|h] Enhancements\n"
" t: Crop telemetry\n"
" t: Crop telemetry\n"
" h: Histogram equalise\n"
" h: Histogram equalise\n"
" -i [r|a|b|c|t] Output image type\n"
" -i [r|a|b|c|t] Output image type\n"
@@ -250,26 +315,22 @@ static void usage(void) {
" b: Channel B\n"
" b: Channel B\n"
" c: False color\n"
" c: False color\n"
" t: Temperature\n"
" t: Temperature\n"
" l: Layered \n"
" m: MCIR \n"
" -d <dir> Image destination directory.\n"
" -d <dir> Image destination directory.\n"
" -s [15-19] Satellite number\n"
" -s [15-19] Satellite number\n"
" -c <file> False color config file\n");
" -c <file> False color config file\n"
" -m <file> Map file\n");
exit(1);
exit(1);
}
}
int readRawImage(char *filename, float **prow, int *nrow) {
int readRawImage(char *filename, float **prow, int *nrow) {
png_bytep *PNGrows = NULL;
FILE *fp = fopen(filename, "r");
FILE *fp = fopen(filename, "r");
// Create read struct
// Create reader
png_structp png = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
png_structp png = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if(!png) return 0;
if(!png) return 0;
// Create info struct
png_infop info = png_create_info_struct(png);
png_infop info = png_create_info_struct(png);
if(!info) return 0;
if(!info) return 0;
// Init I/O
png_init_io(png, fp);
png_init_io(png, fp);
// Read info from header
// Read info from header
@@ -281,25 +342,25 @@ int readRawImage(char *filename, float **prow, int *nrow) {
// Check the image
// Check the image
if(width != 2080){
if(width != 2080){
fprintf(stderr, "Expected a 2080px wide PNG, got a %ipx wide PNG", width );
fprintf(stderr, "Raw image must be 2080px wide.\n" );
return 0;
return 0;
}
if(bit_depth != 8){
fprintf(stderr, "Expected an 8 bit PNG, got an %i bit PNG", bit_depth);
}else if(bit_depth != 8){
fprintf(stderr, "Raw image must have 8 bit color.\n");
return 0;
return 0;
}
if(color_type != PNG_COLOR_TYPE_GRAY){
fprintf(stderr, "Expected a grayscale PNG");
}else if(color_type != PNG_COLOR_TYPE_GRAY){
fprintf(stderr, "Raw image must be grayscale.\n");
return 0;
return 0;
}
}
// Create row buffers
// Create row buffers
png_bytep *PNGrows = NULL;
PNGrows = (png_bytep *) malloc(sizeof(png_bytep) * height);
PNGrows = (png_bytep *) malloc(sizeof(png_bytep) * height);
for(int y = 0; y < height; y++) PNGrows[y] = (png_byte *) malloc(png_get_rowbytes(png, info));
for(int y = 0; y < height; y++) PNGrows[y] = (png_byte *) malloc(png_get_rowbytes(png, info));
// Read image
png_read_image(png, PNGrows);
png_read_image(png, PNGrows);
// Tidy up
// Tidy up
fclose(fp);
fclose(fp);
png_destroy_read_struct(&png, &info, NULL);
png_destroy_read_struct(&png, &info, NULL);
@@ -307,6 +368,7 @@ int readRawImage(char *filename, float **prow, int *nrow) {
*nrow = height;
*nrow = height;
for(int y = 0; y < height; y++) {
for(int y = 0; y < height; y++) {
prow[y] = (float *) malloc(sizeof(float) * width);
prow[y] = (float *) malloc(sizeof(float) * width);
for(int x = 0; x < width; x++)
for(int x = 0; x < width; x++)
prow[y][x] = (float)PNGrows[y][x];
prow[y][x] = (float)PNGrows[y][x];
}
}
@@ -318,11 +380,12 @@ int main(int argc, char **argv) {
char pngfilename[1024];
char pngfilename[1024];
char name[128];
char name[128];
char pngdirname[128] = "";
char pngdirname[128] = "";
char mapFile[256];
char *extension;
char *extension;
// Default to a raw image, with equalization and cropped telemetry
// Default to a raw image, with no enhancements
char imgopt[20] = "r";
char imgopt[20] = "r";
char enc hancements[20] = "ct ";
char enhancements[20] = "";
// Image buffer
// Image buffer
float *prow[3000];
float *prow[3000];
@@ -348,7 +411,7 @@ int main(int argc, char **argv) {
usage();
usage();
int c;
int c;
while ((c = getopt(argc, argv, "c:d:i:s:e:")) != EOF) {
while ((c = getopt(argc, argv, "c:m: d:i:s:e:")) != EOF) {
switch (c) {
switch (c) {
// Output directory name
// Output directory name
case 'd':
case 'd':
@@ -358,6 +421,10 @@ int main(int argc, char **argv) {
case 'c':
case 'c':
readfcconf(optarg);
readfcconf(optarg);
break;
break;
// Map file
case 'm':
strcpy(mapFile, optarg);
break;
// Output image type
// Output image type
case 'i':
case 'i':
strncpy(imgopt, optarg, 20);
strncpy(imgopt, optarg, 20);
@@ -373,7 +440,7 @@ int main(int argc, char **argv) {
break;
break;
// Enchancements
// Enchancements
case 'e':
case 'e':
strncpy(enc hancements, optarg, 20);
strncpy(enhancements, optarg, 20);
break;
break;
default:
default:
usage();
usage();
@@ -399,7 +466,10 @@ int main(int argc, char **argv) {
if(strcmp(extension, "png") == 0){
if(strcmp(extension, "png") == 0){
printf("Reading %s", argv[optind]);
printf("Reading %s", argv[optind]);
readRawImage(argv[optind], prow, &nrow);
if(readRawImage(argv[optind], prow, &nrow) == 0){
fprintf(stderr, "Skipping %s; see above.\n", name);
continue;
}
}else{
}else{
// Open sound file, exit if that fails
// Open sound file, exit if that fails
if (initsnd(argv[optind]) == 0) exit(1);
if (initsnd(argv[optind]) == 0) exit(1);
@@ -410,7 +480,7 @@ int main(int argc, char **argv) {
prow[nrow] = (float *) malloc(sizeof(float) * 2150);
prow[nrow] = (float *) malloc(sizeof(float) * 2150);
// Read into prow and break the loop once we reach the end of the image
// Read into prow and break the loop once we reach the end of the image
if (getpixelrow(prow[nrow]) == 0) break;
if (getpixelrow(prow[nrow], nrow, &zenith ) == 0) break;
printf("Row: %d\r", nrow);
printf("Row: %d\r", nrow);
fflush(stdout);
fflush(stdout);
@@ -420,49 +490,61 @@ int main(int argc, char **argv) {
sf_close(inwav);
sf_close(inwav);
}
}
if(zenith == 0 & mapFile[0] != '\0'){
fprintf(stderr, "WARNING: Guessing peak elevation in image, map will most likely not be aligned.\n");
zenith = nrow / 2;
}
printf("\nTotal rows: %d\n", nrow);
printf("\nTotal rows: %d\n", nrow);
chA = calibrate(prow, nrow, CHA_OFFSET, CH_WIDTH, 0);
chB = calibrate(prow, nrow, CHB_OFFSET, CH_WIDTH, 0);
// Calibrate
chA = calibrate(prow, nrow, CHA_OFFSET, CH_WIDTH);
chB = calibrate(prow, nrow, CHB_OFFSET, CH_WIDTH);
printf("Channel A: %s (%s)\n", ch.id[chA], ch.name[chA]);
printf("Channel A: %s (%s)\n", ch.id[chA], ch.name[chA]);
printf("Channel B: %s (%s)\n", ch.id[chB], ch.name[chB]);
printf("Channel B: %s (%s)\n", ch.id[chB], ch.name[chB]);
// Temperature
// Temperature
if (CONTAINS(imgopt, 't') && chB >= 4) {
if (CONTAINS(imgopt, 't') && chB >= 4) {
// TODO: Doesn't work with channel 4
temperature(prow, nrow, chB, CHB_OFFSET);
temperature(prow, nrow, chB, CHB_OFFSET);
sprintf(pngfilename, "%s/%s-t.png", pngdirname, name);
sprintf(pngfilename, "%s/%s-t.png", pngdirname, name);
ImageOut(pngfilename, "Temperature", prow, nrow, CH_WIDTH, CHB_OFFSET, (png_color*)TempPalette, 0 );
ImageOut(pngfilename, "Temperature", prow, nrow, 2080, 0, TempPalette, enhancements, mapFile );
}
}
// Run the brightness calibration here because the temperature calibration requires raw data
// Layered & false color images both also need brightness calibration
if(CONTAINS(enchancements, 'c') || CONTAINS(enchancements, 'h') || CONTAINS(imgopt, 'l') || CONTAINS(imgopt, 'c'))
calibrate(prow, nrow, CHA_OFFSET, CH_WIDTH+TELE_WIDTH+SYNC_WIDTH+SPC_WIDTH+CH_WIDTH, 1);
// False color image
if(CONTAINS(imgopt, 'c')){
if (chA == 2 && chB >= 4) { // Normal false color
sprintf(pngfilename, "%s/%s-c.png", pngdirname, name);
//ImageRGBOut(pngfilename, prow, nrow);
ImageOut(pngfilename, "False Color", prow, nrow, CH_WIDTH, 0, NULL, enhancements, mapFile);
} else if (chB == 2) { // GVI (global vegetation index) false color
Ngvi(prow, nrow);
sprintf(pngfilename, "%s/%s-c.png", pngdirname, name);
ImageOut(pngfilename, "GVI False Color", prow, nrow, CH_WIDTH, CHB_OFFSET, GviPalette, enhancements, mapFile);
} else {
fprintf(stderr, "Skipping False Color generation; lacking required channels.\n");
}
}
// MCIR
if (CONTAINS(imgopt, 'm')) {
sprintf(pngfilename, "%s/%s-m.png", pngdirname, name);
ImageOut(pngfilename, "MCIR", prow, nrow, 909, CHA_OFFSET, NULL, enhancements, mapFile);
}
// Histogram equalise
// Histogram equalise
if(CONTAINS(enchancements, 'h')){
if(CONTAINS(enhancements, 'h')){
histogramEqualise(prow, nrow, CHA_OFFSET, CH_WIDTH);
histogramEqualise(prow, nrow, CHA_OFFSET, CH_WIDTH);
histogramEqualise(prow, nrow, CHB_OFFSET, CH_WIDTH);
histogramEqualise(prow, nrow, CHB_OFFSET, CH_WIDTH);
}
}
// Layered
if (CONTAINS(imgopt, 'l')){
if(chA == 1){
sprintf(pngfilename, "%s/%s-l.png", pngdirname, name);
ImageOut(pngfilename, "Layered", prow, nrow, CH_WIDTH, 0, NULL, 3);
}else{
fprintf(stderr, "Lacking channels required for generting a layered image.\n");
}
}
// Raw image
// Raw image
if (CONTAINS(imgopt, 'r')) {
if (CONTAINS(imgopt, 'r')) {
int croptele = CONTAINS(enchancements, 't');
char channelstr[45];
char channelstr[45];
sprintf(channelstr, "%s (%s) & %s (%s)", ch.id[chA], ch.name[chA], ch.id[chB], ch.name[chB]);
sprintf(channelstr, "%s (%s) & %s (%s)", ch.id[chA], ch.name[chA], ch.id[chB], ch.name[chB]);
sprintf(pngfilename, "%s/%s-r.png", pngdirname, name);
sprintf(pngfilename, "%s/%s-r.png", pngdirname, name);
ImageOut(pngfilename, channelstr, prow, nrow, IMG_WIDTH, 0, NULL, croptele ? 1 : 0 );
ImageOut(pngfilename, channelstr, prow, nrow, IMG_WIDTH, 0, NULL, enhancements, mapFile);
}
}
// Channel A
// Channel A
@@ -471,7 +553,7 @@ int main(int argc, char **argv) {
sprintf(channelstr, "%s (%s)", ch.id[chA], ch.name[chA]);
sprintf(channelstr, "%s (%s)", ch.id[chA], ch.name[chA]);
sprintf(pngfilename, "%s/%s-%s.png", pngdirname, name, ch.id[chA]);
sprintf(pngfilename, "%s/%s-%s.png", pngdirname, name, ch.id[chA]);
ImageOut(pngfilename, channelstr, prow, nrow, CH_WIDTH, CHA_OFFSET, NULL, 0 );
ImageOut(pngfilename, channelstr, prow, nrow, CH_WIDTH, CHA_OFFSET, NULL, enhancements, mapFile );
}
}
// Channel B
// Channel B
@@ -480,7 +562,7 @@ int main(int argc, char **argv) {
sprintf(channelstr, "%s (%s)", ch.id[chB], ch.name[chB]);
sprintf(channelstr, "%s (%s)", ch.id[chB], ch.name[chB]);
sprintf(pngfilename, "%s/%s-%s.png", pngdirname, name, ch.id[chB]);
sprintf(pngfilename, "%s/%s-%s.png", pngdirname, name, ch.id[chB]);
ImageOut(pngfilename, channelstr, prow, nrow, CH_WIDTH , CHB_OFFSET, NULL, 0 );
ImageOut(pngfilename, channelstr, prow, nrow, CH_WIDTH , CHB_OFFSET, NULL, enhancements, mapFile );
}
}
// Distribution image
// Distribution image
@@ -488,21 +570,6 @@ int main(int argc, char **argv) {
sprintf(pngfilename, "%s/%s-d.png", pngdirname, name);
sprintf(pngfilename, "%s/%s-d.png", pngdirname, name);
distrib(pngfilename, prow, nrow);
distrib(pngfilename, prow, nrow);
}
}
// False color image
if(CONTAINS(imgopt, 'c')){
if (chA == 2 && chB >= 4) { // Normal false color
sprintf(pngfilename, "%s/%s-c.png", pngdirname, name);
//ImageRGBOut(pngfilename, prow, nrow);
ImageOut(pngfilename, "False Color", prow, nrow, CH_WIDTH, 0, NULL, 2);
} else if (chB == 2) { // GVI (global vegetation index) false color
Ngvi(prow, nrow);
sprintf(pngfilename, "%s/%s-c.png", pngdirname, name);
ImageOut(pngfilename, "GVI False Color", prow, nrow, CH_WIDTH, CHB_OFFSET, (png_color*)GviPalette, 0);
} else {
fprintf(stderr, "Lacking channels required for generating a false color image.\n");
}
}
}
}
exit(0);
exit(0);