Explorar el Código

Merge pull request #13 from srcejon/libaptdec

Build shared library + MSVC build support
tags/v1.8.0
Liam hace 3 años
committed by GitHub
padre
commit
5f91799637
No se encontró ninguna clave conocida en la base de datos para esta firma ID de clave GPG: 4AEE18F83AFDEB23
Se han modificado 17 ficheros con 440 adiciones y 274 borrados
  1. +61
    -22
      CMakeLists.txt
  2. +8
    -1
      README.md
  3. +36
    -0
      build_windows.bat
  4. +3
    -0
      build_windows.sh
  5. +114
    -0
      src/apt.h
  6. +7
    -6
      src/color.c
  7. +0
    -6
      src/color.h
  8. +1
    -12
      src/common.h
  9. +12
    -13
      src/dsp.c
  10. +2
    -2
      src/filter.c
  11. +38
    -39
      src/image.c
  12. +2
    -7
      src/image.h
  13. +61
    -41
      src/main.c
  14. +0
    -29
      src/offsets.h
  15. +36
    -36
      src/pngio.c
  16. +7
    -8
      src/pngio.h
  17. +52
    -52
      src/satcal.h

+ 61
- 22
CMakeLists.txt Ver fichero

@@ -2,32 +2,62 @@ cmake_minimum_required (VERSION 3.0.0)
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake")

project(aptdec)
file(GLOB_RECURSE C_SOURCE_FILES src/*.c src/libs/*.c)
add_executable(aptdec ${C_SOURCE_FILES})

# libpng
find_package(PNG)

# libsndfile
find_package(LibSndFile)

set(LIB_C_SOURCE_FILES src/color.c src/dsp.c src/filter.c src/image.c src/libs/reg.c src/libs/median.c)
set(EXE_C_SOURCE_FILES src/main.c src/pngio.c src/libs/argparse.c)
set(LIB_C_HEADER_FILES src/apt.h)

# Link with static library for aptdec executable, so we don't need to set the path
add_library(aptstatic STATIC ${LIB_C_SOURCE_FILES})
# Create shared library for 3rd party apps
add_library(apt SHARED ${LIB_C_SOURCE_FILES})

add_compile_definitions(PALETTE_DIR="../palettes")

# Math
target_link_libraries(aptdec PRIVATE m)
if (PNG_FOUND AND LIBSNDFILE_FOUND)
add_executable(aptdec ${EXE_C_SOURCE_FILES})
include_directories(${PNG_PNG_INCLUDE_DIR})
include_directories(${LIBSNDFILE_INCLUDE_DIR})
target_link_libraries(aptdec PRIVATE PNG::PNG)
target_link_libraries(aptdec PRIVATE ${LIBSNDFILE_LIBRARY})
target_link_libraries(aptdec PRIVATE aptstatic)
if (MSVC)
target_compile_options(aptdec PRIVATE /D_CRT_SECURE_NO_WARNINGS=1 /DAPT_API_STATIC)
else()
# Math
target_link_libraries(aptdec PRIVATE m)

# Throw errors on warnings on release builds
if(CMAKE_BUILD_TYPE MATCHES "Release")
target_compile_options(aptdec PRIVATE -Wall -Wextra -pedantic -Wno-missing-field-initializers -Werror)
# Throw errors on warnings on release builds
if(CMAKE_BUILD_TYPE MATCHES "Release")
target_compile_options(aptdec PRIVATE -Wall -Wextra -pedantic -Wno-missing-field-initializers -Werror)
else()
target_compile_options(aptdec PRIVATE -Wall -Wextra -pedantic)
endif()
endif()
else()
target_compile_options(aptdec PRIVATE -Wall -Wextra -pedantic)
MESSAGE(STATUS "WARNING: Only building apt library, as not all of the required libraries were found for aptdec.")
endif()

# libpng
target_link_libraries(aptdec PRIVATE PNG::PNG)
if(WIN32 AND NOT MINGW)
find_package(PNG CONFIG REQUIRED)
if (MSVC)
target_compile_options(apt PRIVATE /D_CRT_SECURE_NO_WARNINGS=1 /DAPT_API_EXPORT)
target_compile_options(aptstatic PRIVATE /D_CRT_SECURE_NO_WARNINGS=1 /DAPT_API_STATIC)
else()
find_package(PNG REQUIRED)
endif()
# Math
target_link_libraries(apt PRIVATE m)
target_link_libraries(aptstatic PRIVATE m)

# libsndfile
find_package(LibSndFile REQUIRED)
target_link_libraries(aptdec PRIVATE ${LIBSNDFILE_LIBRARY})
if(CMAKE_BUILD_TYPE MATCHES "Release")
target_compile_options(apt PRIVATE -Wall -Wextra -pedantic -Wno-missing-field-initializers -Werror)
else()
target_compile_options(apt PRIVATE -Wall -Wextra -pedantic)
endif()
endif()

# TODO: get this from git
set(PROJECT_VERSION "1.7.0")
@@ -45,16 +75,25 @@ IF(NOT WIN32)
set(CPACK_GENERATOR "DEB;TGZ")
set(CPACK_PACKAGE_FILE_NAME "${CPACK_PACKAGE_NAME}-${CPACK_PACKAGE_VERSION}.${CMAKE_SYSTEM_PROCESSOR}")

install(TARGETS aptdec DESTINATION "bin/")
install(DIRECTORY "${PROJECT_SOURCE_DIR}/palettes/" DESTINATION "palettes/")
if (TARGET aptdec)
install(TARGETS aptdec DESTINATION "bin/")
install(DIRECTORY "${PROJECT_SOURCE_DIR}/palettes/" DESTINATION "palettes/")
endif()

install(TARGETS apt LIBRARY DESTINATION lib)
install(FILES ${LIB_C_HEADER_FILES} DESTINATION include/apt )
else()
#set(CPACK_GENERATOR "ZIP;NSIS")
set(CPACK_GENERATOR "ZIP")
set(CPACK_PACKAGE_FILE_NAME "${CPACK_PACKAGE_NAME}-${CPACK_PACKAGE_VERSION}")

install(TARGETS aptdec DESTINATION "bin/")
file(GLOB_RECURSE DLLS *.dll)
install(FILES ${DLLS} DESTINATION "bin/")
if (TARGET aptdec)
install(TARGETS aptdec DESTINATION "bin/")
file(GLOB_RECURSE DLLS *.dll)
install(FILES ${DLLS} DESTINATION "bin/")
endif()
install(TARGETS apt DESTINATION "bin/")
install(FILES ${LIB_C_HEADER_FILES} DESTINATION include/apt )
install(DIRECTORY "${PROJECT_SOURCE_DIR}/palettes/" DESTINATION "palettes/")
endif()



+ 8
- 1
README.md Ver fichero

@@ -129,11 +129,18 @@ cmake ..
make
```

Since CMake is now being used for building, windows support has come. You can build for windows with the `build_windows.sh` script, you will need the following:
You can cross build for Windows from Linux with the `build_windows.sh` script, you will need the following:
```
sudo apt install wget cmake make mingw-w64 git unzip
```

To build natively on Windows using MSVC, you will also need: git, ninja and cmake. Then run:
```
.\build_windows.bat
```

If you just wish to build libaptdec on Windows, libpng and libsndfile aren't needed.

## Further Reading

[User's Guide for Building and Operating


+ 36
- 0
build_windows.bat Ver fichero

@@ -0,0 +1,36 @@
REM Build using Visual Studio 2019 on Windows
REM Additional tools needed: git, cmake and ninja
REM Build zlib
git clone https://github.com/madler/zlib
cd zlib
mkdir build
cd build
cmake -G Ninja -DCMAKE_C_COMPILER="cl.exe" -DMSVC_TOOLSET_VERSION=190 -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../../winpath ..
ninja install
cd ../../
REM Build libpng
git clone https://github.com/glennrp/libpng
cd libpng
mkdir build
cd build
cmake -G Ninja -DCMAKE_C_COMPILER="cl.exe" -DMSVC_TOOLSET_VERSION=190 -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../../winpath ..
ninja install
cd ../..
REM Build libsndfile - Could build Vorbis, FLAC and Opus first for extra support
git clone https://github.com/libsndfile/libsndfile.git
cd libsndfile
mkdir build
cd build
cmake -G Ninja -DCMAKE_C_COMPILER="cl.exe" -DMSVC_TOOLSET_VERSION=190 -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../../winpath ..
ninja install
cd ../..
REM Build aptdec
mkdir winbuild
cd winbuild
cmake -G Ninja -DCMAKE_C_COMPILER="cl.exe" -DMSVC_TOOLSET_VERSION=190 -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../winpath ..
ninja install
cd ..

+ 3
- 0
build_windows.sh Ver fichero

@@ -1,3 +1,6 @@
#!/bin/bash
# Cross compile for Windows from Linux

TEMP_PATH="$(pwd)/winpath"
set -e



+ 114
- 0
src/apt.h Ver fichero

@@ -0,0 +1,114 @@
/*
* This file is part of Aptdec.
* Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019-2020
* Copyright (c) 2021 Jon Beniston (M7RCE)
*
* Aptdec is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/

#ifndef APT_H
#define APT_H

#ifdef __cplusplus
extern "C" {
#endif

#if defined (__GNUC__) && (__GNUC__ >= 4)
#define APT_API __attribute__((visibility("default")))
#elif defined (_MSC_VER)
#ifdef APT_API_EXPORT
#define APT_API __declspec(dllexport)
#elif APT_API_STATIC
#define APT_API
#else if
#define APT_API __declspec(dllimport)
#endif
#else
#define APT_API
#endif

// Maximum height of an APT image in number of rows
#define APT_MAX_HEIGHT 3000
// Width in pixels of sync
#define APT_SYNC_WIDTH 39
// Width in pixels of space
#define APT_SPC_WIDTH 47
// Width in pixels of telemetry
#define APT_TELE_WIDTH 45
// Width in pixels of a single channel image
#define APT_CH_WIDTH 909
#define APT_FRAME_LEN 128
#define APT_CH_OFFSET (APT_SYNC_WIDTH+APT_SPC_WIDTH+APT_CH_WIDTH+APT_TELE_WIDTH)
// Width in pixels of full frame, including sync, space, images and telemetry
#define APT_IMG_WIDTH 2080
// Offset in pixels to channel A
#define APT_CHA_OFFSET (APT_SYNC_WIDTH+APT_SPC_WIDTH)
// Offset in pixels to channel B
#define APT_CHB_OFFSET (APT_SYNC_WIDTH+APT_SPC_WIDTH+APT_CH_WIDTH+APT_TELE_WIDTH+APT_SYNC_WIDTH+APT_SPC_WIDTH)
#define APT_TOTAL_TELE (APT_SYNC_WIDTH+APT_SPC_WIDTH+APT_TELE_WIDTH+APT_SYNC_WIDTH+APT_SPC_WIDTH+APT_TELE_WIDTH)

// Number of rows required for apt_calibrate
#define APT_CALIBRATION_ROWS 192
// Channel ID returned by apt_calibrate
// NOAA-15: https://nssdc.gsfc.nasa.gov/nmc/experiment/display.action?id=1998-030A-01
// Channel 1: visible (0.58-0.68 um)
// Channel 2: near-IR (0.725-1.0 um)
// Channel 3A: near-IR (1.58-1.64 um)
// Channel 3B: mid-infrared (3.55-3.93 um)
// Channel 4: thermal-infrared (10.3-11.3 um)
// Channel 5: thermal-infrared (11.5-12.5 um)
typedef enum apt_channel {APT_CHANNEL_UNKNOWN, APT_CHANNEL_1, APT_CHANNEL_2, APT_CHANNEL_3A, APT_CHANNEL_4, APT_CHANNEL_5, APT_CHANNEL_3B} apt_channel_t;

// Width in elements of apt_image_t.prow arrays
#define APT_PROW_WIDTH 2150

// apt_getpixelrow callback function to get audio samples.
// context is the same as passed to apt_getpixelrow.
typedef int (*apt_getsamples_t)(void *context, float *samples, int count);

typedef struct {
float *prow[APT_MAX_HEIGHT]; // Row buffers
int nrow; // Number of rows
int zenith; // Row in image where satellite reaches peak elevation
apt_channel_t chA, chB; // ID of each channel
char name[256]; // Stripped filename
char *palette; // Filename of palette
} apt_image_t;

typedef struct {
float r, g, b;
} apt_rgb_t;

int APT_API apt_init(double sample_rate);
int APT_API apt_getpixelrow(float *pixelv, int nrow, int *zenith, int reset, apt_getsamples_t getsamples, void *context);

void APT_API apt_histogramEqualise(float **prow, int nrow, int offset, int width);
void APT_API apt_linearEnhance(float **prow, int nrow, int offset, int width);
apt_channel_t APT_API apt_calibrate(float **prow, int nrow, int offset, int width) ;
void APT_API apt_denoise(float **prow, int nrow, int offset, int width);
void APT_API apt_flipImage(apt_image_t *img, int width, int offset);
int APT_API apt_cropNoise(apt_image_t *img);

apt_rgb_t APT_API apt_applyPalette(char *palette, int val);
apt_rgb_t APT_API apt_RGBcomposite(apt_rgb_t top, float top_a, apt_rgb_t bottom, float bottom_a);

extern char APT_API apt_TempPalette[256*3];
extern char APT_API apt_PrecipPalette[58*3];

#ifdef __cplusplus
}
#endif

#endif

+ 7
- 6
src/color.c Ver fichero

@@ -17,18 +17,19 @@
*
*/

#include "apt.h"
#include "color.h"

rgb_t applyPalette(char *palette, int val){
return (rgb_t){
apt_rgb_t apt_applyPalette(char *palette, int val){
return (apt_rgb_t){
palette[(int)CLIP(val, 0, 255)*3 + 0],
palette[(int)CLIP(val, 0, 255)*3 + 1],
palette[(int)CLIP(val, 0, 255)*3 + 2]
};
}

rgb_t RGBcomposite(rgb_t top, float top_a, rgb_t bottom, float bottom_a){
return (rgb_t){
apt_rgb_t apt_RGBcomposite(apt_rgb_t top, float top_a, apt_rgb_t bottom, float bottom_a){
return (apt_rgb_t){
MCOMPOSITE(top.r, top_a, bottom.r, bottom_a),
MCOMPOSITE(top.g, top_a, bottom.g, bottom_a),
MCOMPOSITE(top.b, top_a, bottom.b, bottom_a)
@@ -36,7 +37,7 @@ rgb_t RGBcomposite(rgb_t top, float top_a, rgb_t bottom, float bottom_a){
}

// The "I totally didn't just steal this from WXtoImg" palette
char TempPalette[256*3] = {
char apt_TempPalette[256*3] = {
"\x45\x0\x8f\x46\x0\x91\x47\x0\x92\x48\x0\x94\x49\x0\x96\x4a\x0\x98\x4b\x0\x9b\x4d\x0\x9d"
"\x4e\x0\xa0\x50\x0\xa2\x51\x0\xa5\x52\x0\xa7\x54\x0\xaa\x56\x0\xae\x57\x0\xb1"
"\x58\x0\xb4\x5a\x0\xb7\x5c\x0\xba\x5e\x0\xbd\x5f\x0\xc0\x61\x0\xc4\x64\x0\xc8"
@@ -76,7 +77,7 @@ char TempPalette[256*3] = {
"\xc8\x0\x0\xcc\x0\x0\xcc\x0\x0"
};

char PrecipPalette[58*3] = {
char apt_PrecipPalette[58*3] = {
"\x8\x89\x41\x0\xc5\x44\x0\xd1\x2c\x0\xe3\x1c\x0\xf9\x6\x14\xff\x0\x3e\xff\x0\x5d\xff\x0"
"\x80\xff\x0\xab\xff\x0\xcd\xfe\x0\xf8\xff\x0\xff\xe6\x0\xff\xb8\x0\xff\x98\x0"
"\xff\x75\x0\xff\x49\x0\xfe\x26\x0\xff\x4\x0\xdf\x0\x0\xa8\x0\x0\x87\x0\x0"


+ 0
- 6
src/color.h Ver fichero

@@ -1,9 +1,3 @@
#include "common.h"

#define MCOMPOSITE(m1, a1, m2, a2) (m1*a1 + m2*a2*(1-a1))

rgb_t applyPalette(char *palette, int val);
rgb_t RGBcomposite(rgb_t top, float top_a, rgb_t bottom, float bottom_a);

extern char TempPalette[256*3];
extern char PrecipPalette[58*3];

+ 1
- 12
src/common.h Ver fichero

@@ -19,7 +19,6 @@

// Constants
#define VERSION "Aptdec; (c) 2004-2009 Thierry Leconte F4DWV, Xerbo (xerbo@protonmail.com) 2019-2020"
#define MAX_HEIGHT 3000

// Useful macros
#define CLIP(v, lo, hi) (v > hi ? hi : (v > lo ? v : lo))
@@ -28,17 +27,6 @@
// Typedefs
#ifndef STRUCTS_DEFINED
#define STRUCTS_DEFINED
typedef struct {
float r, g, b;
} rgb_t;
typedef struct {
float *prow[MAX_HEIGHT]; // Row buffers
int nrow; // Number of rows
int zenith; // Row in image where satellite reaches peak elevation
int chA, chB; // ID of each channel
char name[256]; // Stripped filename
char *palette; // Filename of palette
} image_t;
typedef struct {
char *type; // Output image type
char *effects; // Effects on the image
@@ -70,4 +58,5 @@ enum effects {
Linear_Equalise='l',
Crop_Noise='c'
};

#endif

+ 12
- 13
src/dsp.c Ver fichero

@@ -22,6 +22,7 @@
#include <string.h>
#include <math.h>

#include "apt.h"
#include "filter.h"

// In case your C compiler is so old that Pi hadn't been invented yet
@@ -40,8 +41,6 @@
#define RSMULT 15
#define Fi (Fp * RSMULT)

extern int getsample(float *inbuff, int count);

static double Fe;

static double offset = 0.0;
@@ -51,7 +50,7 @@ static double FreqOsc;
static double K1, K2;

// Check the sample rate and calculate some constants
int init_dsp(double F) {
int apt_init(double F) {
if(F > Fi) return 1;
if(F < Fp) return -1;
Fe = F;
@@ -132,7 +131,7 @@ static double pll(double I, double Q) {
}

// Convert samples into pixels
static int getamp(double *ampbuff, int count) {
static int getamp(double *ampbuff, int count, apt_getsamples_t getsamples, void *context) {
static float inbuff[BLKIN];
static int idxin = 0;
static int nin = 0;
@@ -148,7 +147,7 @@ static int getamp(double *ampbuff, int count) {
idxin = 0;

// Read some samples
res = getsample(&(inbuff[nin]), BLKIN - nin);
res = getsamples(context, &(inbuff[nin]), BLKIN - nin);
nin += res;

// Make sure there is enough samples to continue
@@ -169,7 +168,7 @@ static int getamp(double *ampbuff, int count) {
}

// Sub-pixel offsetting + FIR compensation
int getpixelv(float *pvbuff, int count) {
int getpixelv(float *pvbuff, int count, apt_getsamples_t getsamples, void *context) {
// Amplitude buffer
static double ampbuff[BLKAMP];
static int nam = 0;
@@ -179,7 +178,7 @@ int getpixelv(float *pvbuff, int count) {

// Gaussian resampling factor
mult = (double) Fi / Fe * FreqLine;
int m = RSFilterLen / mult + 1;
int m = (int)(RSFilterLen / mult + 1);

for (int n = 0; n < count; n++) {
int shift;
@@ -188,14 +187,14 @@ int getpixelv(float *pvbuff, int count) {
int res;
memmove(ampbuff, &(ampbuff[idxam]), nam * sizeof(double));
idxam = 0;
res = getamp(&(ampbuff[nam]), BLKAMP - nam);
res = getamp(&(ampbuff[nam]), BLKAMP - nam, getsamples, context);
nam += res;
if (nam < m)
return n;
}

// Gaussian FIR compensation filter
pvbuff[n] = rsfir(&(ampbuff[idxam]), rsfilter, RSFilterLen, offset, mult) * mult * 256.0;
pvbuff[n] = (float)(rsfir(&(ampbuff[idxam]), rsfilter, RSFilterLen, offset, mult) * mult * 256.0);

shift = ((int) floor((RSMULT - offset) / mult)) + 1;
offset = shift * mult + offset - RSMULT;
@@ -208,7 +207,7 @@ int getpixelv(float *pvbuff, int count) {
}

// Get an entire row of pixels, aligned with sync markers
int getpixelrow(float *pixelv, int nrow, int *zenith, int reset) {
int apt_getpixelrow(float *pixelv, int nrow, int *zenith, int reset, apt_getsamples_t getsamples, void *context) {
static float pixels[PixelLine + SyncFilterLen];
static int npv;
static int synced = 0;
@@ -226,7 +225,7 @@ int getpixelrow(float *pixelv, int nrow, int *zenith, int reset) {

// Get the sync line
if (npv < SyncFilterLen + 2) {
res = getpixelv(&(pixelv[npv]), SyncFilterLen + 2 - npv);
res = getpixelv(&(pixelv[npv]), SyncFilterLen + 2 - npv, getsamples, context);
npv += res;
if (npv < SyncFilterLen + 2)
return 0;
@@ -257,7 +256,7 @@ int getpixelrow(float *pixelv, int nrow, int *zenith, int reset) {
static int lastmshift;

if (npv < PixelLine + SyncFilterLen) {
res = getpixelv(&(pixelv[npv]), PixelLine + SyncFilterLen - npv);
res = getpixelv(&(pixelv[npv]), PixelLine + SyncFilterLen - npv, getsamples, context);
npv += res;
if (npv < PixelLine + SyncFilterLen)
return 0;
@@ -295,7 +294,7 @@ int getpixelrow(float *pixelv, int nrow, int *zenith, int reset) {

// Get the rest of this row
if (npv < PixelLine) {
res = getpixelv(&(pixelv[npv]), PixelLine - npv);
res = getpixelv(&(pixelv[npv]), PixelLine - npv, getsamples, context);
npv += res;
if (npv < PixelLine)
return 0;


+ 2
- 2
src/filter.c Ver fichero

@@ -27,7 +27,7 @@ float fir(float *buff, const float *coeff, const int len) {
for (int i = 0; i < len; i++) {
r += buff[i] * coeff[i];
}
return r;
return (float)r;
}

/* IQ finite impulse response
@@ -61,5 +61,5 @@ float rsfir(double *buff, const float *coeff, const int len, const double offset
alpha = n - k;
out += buff[i] * (coeff[k] * (1.0 - alpha) + coeff[k + 1] * alpha);
}
return out;
return (float)out;
}

+ 38
- 39
src/image.c Ver fichero

@@ -19,11 +19,10 @@

#include <stdio.h>
#include <string.h>
#include <sndfile.h>
#include <math.h>
#include <stdlib.h>

#include "offsets.h"
#include "apt.h"
#include "libs/reg.h"
#include "image.h"

@@ -55,7 +54,7 @@ static double rgcal(float x, rgparam_t *rgpr) {
static double tele[16];
static double Cs;

void histogramEqualise(float **prow, int nrow, int offset, int width){
void apt_histogramEqualise(float **prow, int nrow, int offset, int width){
// Plot histogram
int histogram[256] = { 0 };
for(int y = 0; y < nrow; y++)
@@ -73,13 +72,13 @@ void histogramEqualise(float **prow, int nrow, int offset, int width){
int area = nrow * width;
for(int y = 0; y < nrow; y++){
for(int x = 0; x < width; x++){
int k = prow[y][x+offset];
prow[y][x+offset] = (256.0/area) * cf[k];
int k = (int)prow[y][x+offset];
prow[y][x+offset] = (256.0f/area) * cf[k];
}
}
}

void linearEnhance(float **prow, int nrow, int offset, int width){
void apt_linearEnhance(float **prow, int nrow, int offset, int width){
// Plot histogram
int histogram[256] = { 0 };
for(int y = 0; y < nrow; y++)
@@ -98,19 +97,19 @@ void linearEnhance(float **prow, int nrow, int offset, int width){
// Stretch the brightness into the new range
for(int y = 0; y < nrow; y++){
for(int x = 0; x < width; x++){
prow[y][x+offset] = (prow[y][x+offset]-min) / (max-min) * 255.0;
prow[y][x+offset] = CLIP(prow[y][x+offset], 0.0, 255.0);
prow[y][x+offset] = (prow[y][x+offset]-min) / (max-min) * 255.0f;
prow[y][x+offset] = CLIP(prow[y][x+offset], 0.0f, 255.0f);
}
}
}

// Brightness calibrate, including telemetry
void calibrateImage(float **prow, int nrow, int offset, int width, rgparam_t regr){
offset -= SYNC_WIDTH+SPC_WIDTH;
offset -= APT_SYNC_WIDTH+APT_SPC_WIDTH;

for (int y = 0; y < nrow; y++) {
for (int x = 0; x < width+SYNC_WIDTH+SPC_WIDTH+TELE_WIDTH; x++) {
float pv = rgcal(prow[y][x + offset], &regr);
for (int x = 0; x < width+APT_SYNC_WIDTH+APT_SPC_WIDTH+APT_TELE_WIDTH; x++) {
float pv = (float)rgcal(prow[y][x + offset], &regr);
prow[y][x + offset] = CLIP(pv, 0, 255);
}
}
@@ -126,17 +125,17 @@ double teleNoise(double wedges[16]){
}

// Get telemetry data for thermal calibration
int calibrate(float **prow, int nrow, int offset, int width) {
double teleline[MAX_HEIGHT] = { 0.0 };
apt_channel_t apt_calibrate(float **prow, int nrow, int offset, int width) {
double teleline[APT_MAX_HEIGHT] = { 0.0 };
double wedge[16];
rgparam_t regr[MAX_HEIGHT/FRAME_LEN + 1];
rgparam_t regr[APT_MAX_HEIGHT/APT_FRAME_LEN + 1];
int telestart, mtelestart = 0;
int channel = -1;

// The minimum rows required to decode a full frame
if (nrow < 192) {
if (nrow < APT_CALIBRATION_ROWS) {
fprintf(stderr, "Telemetry decoding error, not enough rows\n");
return 0;
return APT_CHANNEL_UNKNOWN;
}

// Calculate average of a row of telemetry
@@ -156,8 +155,8 @@ int calibrate(float **prow, int nrow, int offset, int width) {
float df;

// (sum 4px below) - (sum 4px above)
df = (teleline[n - 4] + teleline[n - 3] + teleline[n - 2] + teleline[n - 1]) -
(teleline[n + 0] + teleline[n + 1] + teleline[n + 2] + teleline[n + 3]);
df = (float)((teleline[n - 4] + teleline[n - 3] + teleline[n - 2] + teleline[n - 1]) -
(teleline[n + 0] + teleline[n + 1] + teleline[n + 2] + teleline[n + 3]));

// Find the maximum difference
if (df > max) {
@@ -166,18 +165,18 @@ int calibrate(float **prow, int nrow, int offset, int width) {
}
}

telestart = (mtelestart + 64) % FRAME_LEN;
telestart = (mtelestart + 64) % APT_FRAME_LEN;

// Make sure that theres at least one full frame in the image
if (nrow < telestart + FRAME_LEN) {
if (nrow < telestart + APT_FRAME_LEN) {
fprintf(stderr, "Telemetry decoding error, not enough rows\n");
return 0;
return APT_CHANNEL_UNKNOWN;
}

// Find the least noisy frame
double minNoise = -1;
int bestFrame = -1;
for (int n = telestart, k = 0; n < nrow - FRAME_LEN; n += FRAME_LEN, k++) {
for (int n = telestart, k = 0; n < nrow - APT_FRAME_LEN; n += APT_FRAME_LEN, k++) {
int j;

for (j = 0; j < 16; j++) {
@@ -197,7 +196,7 @@ int calibrate(float **prow, int nrow, int offset, int width) {
// Compute & apply regression on the wedges
rgcomp(wedge, &regr[k]);
for (int j = 0; j < 16; j++)
tele[j] = rgcal(wedge[j], &regr[k]);
tele[j] = (float)rgcal((float)wedge[j], &regr[k]);

/* Compare the channel ID wedge to the reference
* wedges, the wedge with the closest match will
@@ -205,7 +204,7 @@ int calibrate(float **prow, int nrow, int offset, int width) {
*/
float min = -1;
for (int j = 0; j < 6; j++) {
float df = tele[15] - tele[j];
float df = (float)(tele[15] - tele[j]);
df *= df;

if (df < min || min == -1) {
@@ -217,10 +216,10 @@ int calibrate(float **prow, int nrow, int offset, int width) {
// Find the brightness of the minute marker, I don't really know what for
Cs = 0.0;
int i, j = n;
for (i = 0, j = n; j < n + FRAME_LEN; j++) {
for (i = 0, j = n; j < n + APT_FRAME_LEN; j++) {
float csline = 0.0;
for (int l = 3; l < 43; l++)
csline += prow[n][l + offset - SPC_WIDTH];
csline += prow[n][l + offset - APT_SPC_WIDTH];
csline /= 40.0;

if (csline > 50.0) {
@@ -228,18 +227,18 @@ int calibrate(float **prow, int nrow, int offset, int width) {
i++;
}
}
Cs = rgcal(Cs / i, &regr[k]);
Cs = rgcal((float)(Cs / i), &regr[k]);
}
}

if(bestFrame == -1){
fprintf(stderr, "Something has gone very wrong, please file a bug report.\n");
return 0;
return APT_CHANNEL_UNKNOWN;
}

calibrateImage(prow, nrow, offset, width, regr[bestFrame]);

return channel + 1;
return (apt_channel_t)(channel + 1);

}

@@ -247,7 +246,7 @@ extern float quick_select(float arr[], int n);

// Biased median denoise, pretyt ugly
#define TRIG_LEVEL 40
void denoise(float **prow, int nrow, int offset, int width){
void apt_denoise(float **prow, int nrow, int offset, int width){
for(int y = 2; y < nrow-2; y++){
for(int x = offset+1; x < offset+width-1; x++){
if(prow[y][x+1] - prow[y][x] > TRIG_LEVEL ||
@@ -267,7 +266,7 @@ void denoise(float **prow, int nrow, int offset, int width){
#undef TRIG_LEVEL

// Flips a channel, for northbound passes
void flipImage(image_t *img, int width, int offset){
void apt_flipImage(apt_image_t *img, int width, int offset){
for(int y = 1; y < img->nrow; y++){
for(int x = 1; x < ceil(width / 2.0); x++){
// Flip top-left & bottom-right
@@ -279,17 +278,17 @@ void flipImage(image_t *img, int width, int offset){
}

// Calculate crop to reomve noise from the start and end of an image
int cropNoise(image_t *img){
int apt_cropNoise(apt_image_t *img){
#define NOISE_THRESH 180.0

// Average value of minute marker
float spc_rows[MAX_HEIGHT] = { 0.0 };
float spc_rows[APT_MAX_HEIGHT] = { 0.0 };
int startCrop = 0; int endCrop = img->nrow;
for(int y = 0; y < img->nrow; y++) {
for(int x = 0; x < SPC_WIDTH; x++) {
spc_rows[y] += img->prow[y][x + (CHB_OFFSET - SPC_WIDTH)];
for(int x = 0; x < APT_SPC_WIDTH; x++) {
spc_rows[y] += img->prow[y][x + (APT_CHB_OFFSET - APT_SPC_WIDTH)];
}
spc_rows[y] /= SPC_WIDTH;
spc_rows[y] /= APT_SPC_WIDTH;

// Skip minute markings
if(spc_rows[y] < 10) {
@@ -319,7 +318,7 @@ int cropNoise(image_t *img){

// Remove the noisy rows at start
for(int y = 0; y < img->nrow-startCrop; y++) {
memmove(img->prow[y], img->prow[y+startCrop], sizeof(float)*2150);
memmove(img->prow[y], img->prow[y+startCrop], sizeof(float)*APT_PROW_WIDTH);
}

// Ignore the noisy rows at the end
@@ -396,7 +395,7 @@ static double tempcal(float Ce, int satnum, tempparam_t * rgpr) {
}

// Temperature calibration wrapper
void temperature(options_t *opts, image_t *img, int offset, int width){
void temperature(options_t *opts, apt_image_t *img, int offset, int width){
tempparam_t temp;

printf("Temperature... ");
@@ -406,7 +405,7 @@ void temperature(options_t *opts, image_t *img, int offset, int width){

for (int y = 0; y < img->nrow; y++) {
for (int x = 0; x < width; x++) {
img->prow[y][x + offset] = tempcal(img->prow[y][x + offset], opts->satnum - 15, &temp);
img->prow[y][x + offset] = (float)tempcal(img->prow[y][x + offset], opts->satnum - 15, &temp);
}
}
printf("Done\n");


+ 2
- 7
src/image.h Ver fichero

@@ -1,9 +1,4 @@
#include "apt.h"
#include "common.h"

void histogramEqualise(float **prow, int nrow, int offset, int width);
void linearEnhance(float **prow, int nrow, int offset, int width);
int calibrate(float **prow, int nrow, int offset, int width) ;
void denoise(float **prow, int nrow, int offset, int width);
void flipImage(image_t *img, int width, int offset);
int cropNoise(image_t *img);
void temperature(options_t *opts, image_t *img, int offset, int width);
void APT_API temperature(options_t *opts, apt_image_t *img, int offset, int width);

+ 61
- 41
src/main.c Ver fichero

@@ -20,18 +20,19 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#ifndef _MSC_VER
#include <libgen.h>
#else
#include <windows.h>
#endif
#include <math.h>
#include <sndfile.h>
#include <errno.h>
#include <time.h>
#include "libs/argparse.h"

#include "offsets.h"

// DSP
extern int init_dsp(double F);
extern int getpixelrow(float *pixelv, int nrow, int *zenith, int reset);
#include "common.h"
#include "apt.h"

#include "pngio.h"
#include "image.h"
@@ -44,9 +45,26 @@ int channels = 1;

// Function declarations
static int initsnd(char *filename);
int getsample(float *sample, int nb);
int getsamples(void *context, float *samples, int nb);
static int processAudio(char *filename, options_t *opts);

#ifdef _MSC_VER
// Functions not supported by MSVC
static char *dirname(char *path)
{
static char dir[MAX_PATH];
_splitpath(path, NULL, dir, NULL, NULL);
return dir;
}

static char *basename(char *path)
{
static char base[MAX_PATH];
_splitpath(path, NULL, NULL, base, NULL);
return base;
}
#endif

int main(int argc, const char **argv) {
options_t opts = { "r", "", 19, "", ".", 0, "", "", 1.0, 0 };

@@ -98,7 +116,7 @@ int main(int argc, const char **argv) {

static int processAudio(char *filename, options_t *opts){
// Image info struct
image_t img;
apt_image_t img;

// Mapping between wedge value and channel ID
static struct {
@@ -106,7 +124,7 @@ static int processAudio(char *filename, options_t *opts){
char *name[7];
} ch = {
{ "?", "1", "2", "3A", "4", "5", "3B" },
{ "unknown", "visble", "near-infrared", "mid-infrared", "thermal-infrared", "thermal-infrared", "mid-infrared" }
{ "unknown", "visble", "near-infrared", "near-infrared", "thermal-infrared", "thermal-infrared", "mid-infrared" }
};

// Buffer for image channel
@@ -125,7 +143,7 @@ static int processAudio(char *filename, options_t *opts){
strncpy(img.name, ctime(&t), 24);

// Init a row writer
initWriter(opts, &img, IMG_WIDTH, MAX_HEIGHT, "Unprocessed realtime image", "r");
initWriter(opts, &img, APT_IMG_WIDTH, APT_MAX_HEIGHT, "Unprocessed realtime image", "r");
}

if(strcmp(extension, "png") == 0){
@@ -141,15 +159,15 @@ static int processAudio(char *filename, options_t *opts){

// Build image
// TODO: multithreading, would require some sort of input buffer
for (img.nrow = 0; img.nrow < MAX_HEIGHT; img.nrow++) {
for (img.nrow = 0; img.nrow < APT_MAX_HEIGHT; img.nrow++) {
// Allocate memory for this row
img.prow[img.nrow] = (float *) malloc(sizeof(float) * 2150);
img.prow[img.nrow] = (float *) malloc(sizeof(float) * APT_PROW_WIDTH);

// Write into memory and break the loop when there are no more samples to read
if (getpixelrow(img.prow[img.nrow], img.nrow, &img.zenith, (img.nrow == 0)) == 0)
if (apt_getpixelrow(img.prow[img.nrow], img.nrow, &img.zenith, (img.nrow == 0), getsamples, NULL) == 0)
break;

if(opts->realtime) pushRow(img.prow[img.nrow], IMG_WIDTH);
if(opts->realtime) pushRow(img.prow[img.nrow], APT_IMG_WIDTH);

fprintf(stderr, "Row: %d\r", img.nrow);
fflush(stderr);
@@ -171,81 +189,81 @@ static int processAudio(char *filename, options_t *opts){
}

// Calibrate
img.chA = calibrate(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
img.chB = calibrate(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
img.chA = apt_calibrate(img.prow, img.nrow, APT_CHA_OFFSET, APT_CH_WIDTH);
img.chB = apt_calibrate(img.prow, img.nrow, APT_CHB_OFFSET, APT_CH_WIDTH);
printf("Channel A: %s (%s)\n", ch.id[img.chA], ch.name[img.chA]);
printf("Channel B: %s (%s)\n", ch.id[img.chB], ch.name[img.chB]);

// Crop noise from start and end of image
if(CONTAINS(opts->effects, Crop_Noise)){
img.zenith -= cropNoise(&img);
img.zenith -= apt_cropNoise(&img);
}

// Denoise
if(CONTAINS(opts->effects, Denoise)){
denoise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
denoise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
apt_denoise(img.prow, img.nrow, APT_CHA_OFFSET, APT_CH_WIDTH);
apt_denoise(img.prow, img.nrow, APT_CHB_OFFSET, APT_CH_WIDTH);
}

// Flip, for northbound passes
if(CONTAINS(opts->effects, Flip_Image)){
flipImage(&img, CH_WIDTH, CHA_OFFSET);
flipImage(&img, CH_WIDTH, CHB_OFFSET);
apt_flipImage(&img, APT_CH_WIDTH, APT_CHA_OFFSET);
apt_flipImage(&img, APT_CH_WIDTH, APT_CHB_OFFSET);
}

// Temperature
if (CONTAINS(opts->type, Temperature) && img.chB >= 4) {
// Create another buffer as to not modify the orignal
image_t tmpimg = img;
apt_image_t tmpimg = img;
for(int i = 0; i < img.nrow; i++){
tmpimg.prow[i] = (float *) malloc(sizeof(float) * 2150);
memcpy(tmpimg.prow[i], img.prow[i], sizeof(float) * 2150);
tmpimg.prow[i] = (float *) malloc(sizeof(float) * APT_PROW_WIDTH);
memcpy(tmpimg.prow[i], img.prow[i], sizeof(float) * APT_PROW_WIDTH);
}

// Perform temperature calibration
temperature(opts, &tmpimg, CHB_OFFSET, CH_WIDTH);
ImageOut(opts, &tmpimg, CHB_OFFSET, CH_WIDTH, "Temperature", Temperature, (char *)TempPalette);
temperature(opts, &tmpimg, APT_CHB_OFFSET, APT_CH_WIDTH);
ImageOut(opts, &tmpimg, APT_CHB_OFFSET, APT_CH_WIDTH, "Temperature", Temperature, (char *)apt_TempPalette);
}

// MCIR
if (CONTAINS(opts->type, MCIR))
ImageOut(opts, &img, CHA_OFFSET, CH_WIDTH, "MCIR", MCIR, NULL);
ImageOut(opts, &img, APT_CHA_OFFSET, APT_CH_WIDTH, "MCIR", MCIR, NULL);

// Linear equalise
if(CONTAINS(opts->effects, Linear_Equalise)){
linearEnhance(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
linearEnhance(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
apt_linearEnhance(img.prow, img.nrow, APT_CHA_OFFSET, APT_CH_WIDTH);
apt_linearEnhance(img.prow, img.nrow, APT_CHB_OFFSET, APT_CH_WIDTH);
}

// Histogram equalise
if(CONTAINS(opts->effects, Histogram_Equalise)){
histogramEqualise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
histogramEqualise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
apt_histogramEqualise(img.prow, img.nrow, APT_CHA_OFFSET, APT_CH_WIDTH);
apt_histogramEqualise(img.prow, img.nrow, APT_CHB_OFFSET, APT_CH_WIDTH);
}

// Raw image
if (CONTAINS(opts->type, Raw_Image)) {
sprintf(desc, "%s (%s) & %s (%s)", ch.id[img.chA], ch.name[img.chA], ch.id[img.chB], ch.name[img.chB]);
ImageOut(opts, &img, 0, IMG_WIDTH, desc, Raw_Image, NULL);
ImageOut(opts, &img, 0, APT_IMG_WIDTH, desc, Raw_Image, NULL);
}

// Palette image
if (CONTAINS(opts->type, Palleted)) {
img.palette = opts->palette;
strcpy(desc, "Palette composite");
ImageOut(opts, &img, CHA_OFFSET, 909, desc, Palleted, NULL);
ImageOut(opts, &img, APT_CHA_OFFSET, 909, desc, Palleted, NULL);
}

// Channel A
if (CONTAINS(opts->type, Channel_A)) {
sprintf(desc, "%s (%s)", ch.id[img.chA], ch.name[img.chA]);
ImageOut(opts, &img, CHA_OFFSET, CH_WIDTH, desc, Channel_A, NULL);
ImageOut(opts, &img, APT_CHA_OFFSET, APT_CH_WIDTH, desc, Channel_A, NULL);
}

// Channel B
if (CONTAINS(opts->type, Channel_B)) {
sprintf(desc, "%s (%s)", ch.id[img.chB], ch.name[img.chB]);
ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, desc, Channel_B, NULL);
ImageOut(opts, &img, APT_CHB_OFFSET, APT_CH_WIDTH, desc, Channel_B, NULL);
}

return 1;
@@ -263,7 +281,7 @@ static int initsnd(char *filename) {
return 0;
}

res = init_dsp(infwav.samplerate);
res = apt_init(infwav.samplerate);
printf("Input file: %s\n", filename);
if(res < 0) {
fprintf(stderr, "Input sample rate too low: %d\n", infwav.samplerate);
@@ -280,16 +298,18 @@ static int initsnd(char *filename) {
}

// Read samples from the audio file
int getsample(float *sample, int nb) {
int getsamples(void *context, float *samples, int nb) {
(void) context;
if(channels == 1){
return sf_read_float(audioFile, sample, nb);
return (int)sf_read_float(audioFile, samples, nb);
}else{
/* Multi channel audio is encoded such as:
* Ch1,Ch2,Ch1,Ch2,Ch1,Ch2
*/
float buf[nb * channels]; // Something like BLKIN*2 could also be used
int samples = sf_read_float(audioFile, buf, nb * channels);
for(int i = 0; i < nb; i++) sample[i] = buf[i * channels];
return samples / channels;
float *buf = malloc(sizeof(float) * nb * channels); // Something like BLKIN*2 could also be used
int samplesRead = (int)sf_read_float(audioFile, buf, nb * channels);
for(int i = 0; i < nb; i++) samples[i] = buf[i * channels];
free(buf);
return samplesRead / channels;
}
}

+ 0
- 29
src/offsets.h Ver fichero

@@ -1,29 +0,0 @@
/*
* This file is part of Aptdec.
* Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019-2020
*
* Aptdec is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/

#define SYNC_WIDTH 39
#define SPC_WIDTH 47
#define TELE_WIDTH 45
#define CH_WIDTH 909
#define FRAME_LEN 128
#define CH_OFFSET (SYNC_WIDTH+SPC_WIDTH+CH_WIDTH+TELE_WIDTH)
#define IMG_WIDTH 2080
#define CHA_OFFSET (SYNC_WIDTH+SPC_WIDTH)
#define CHB_OFFSET (SYNC_WIDTH+SPC_WIDTH+CH_WIDTH+TELE_WIDTH+SYNC_WIDTH+SPC_WIDTH)
#define TOTAL_TELE (SYNC_WIDTH+SPC_WIDTH+TELE_WIDTH+SYNC_WIDTH+SPC_WIDTH+TELE_WIDTH)

+ 36
- 36
src/pngio.c Ver fichero

@@ -26,7 +26,7 @@

#include "pngio.h"

int mapOverlay(char *filename, rgb_t **crow, int nrow, int zenith, int MCIR) {
int mapOverlay(char *filename, apt_rgb_t **crow, int nrow, int zenith, int MCIR) {
FILE *fp = fopen(filename, "rb");
if(!fp) {
fprintf(stderr, "Cannot open %s\n", filename);
@@ -88,14 +88,14 @@ int mapOverlay(char *filename, rgb_t **crow, int nrow, int zenith, int MCIR) {
for(int x = 49; x < width - 82; x++){
// Maps are 16 bit / channel
png_bytep px = &mapRows[CLIP(y + mapOffset, 0, height-1)][x * 6];
rgb_t map = {
apt_rgb_t map = {
(px[0] << 8) | px[1],
(px[2] << 8) | px[3],
(px[4] << 8) | px[5]
};

// Pixel offsets
int chb = x + CHB_OFFSET - 49;
int chb = x + APT_CHB_OFFSET - 49;
int cha = x + 36;

// Fill in map
@@ -105,10 +105,10 @@ int mapOverlay(char *filename, rgb_t **crow, int nrow, int zenith, int MCIR) {
float darken = ((255-crow[y][chb].r)-100)/50;
float green = CLIP(map.g/300, 0, 1);
float blue = 0.15 - CLIP(map.b/960.0, 0, 1);
crow[y][cha] = (rgb_t){blue*1000*darken, green*98*darken, blue*500.0*darken};
crow[y][cha] = (apt_rgb_t){blue*1000*darken, green*98*darken, blue*500.0*darken};
}else{
// Sea
crow[y][cha] = (rgb_t){9, 17, 74};
crow[y][cha] = (apt_rgb_t){9, 17, 74};
}
}

@@ -125,15 +125,15 @@ int mapOverlay(char *filename, rgb_t **crow, int nrow, int zenith, int MCIR) {
map.b = CLIP(map.b, 0, 255.0);

// Map overlay on channel A
crow[y][cha] = RGBcomposite(map, alpha, crow[y][cha], 1);
crow[y][cha] = apt_RGBcomposite(map, alpha, crow[y][cha], 1);
// Map overlay on channel B
if(!MCIR)
crow[y][chb] = RGBcomposite(map, alpha, crow[y][chb], 1);
crow[y][chb] = apt_RGBcomposite(map, alpha, crow[y][chb], 1);

// Cloud overlay on channel A
if(MCIR){
float cloud = CLIP((crow[y][chb].r - 113) / 90.0, 0, 1);
crow[y][cha] = RGBcomposite((rgb_t){255, 250, 245}, cloud, crow[y][cha], 1);
crow[y][cha] = apt_RGBcomposite((apt_rgb_t){255, 250, 245}, cloud, crow[y][cha], 1);
}
}
}
@@ -170,8 +170,8 @@ int readRawImage(char *filename, float **prow, int *nrow) {
png_byte bit_depth = png_get_bit_depth(png, info);

// Check the image
if(width != IMG_WIDTH){
fprintf(stderr, "Raw image must be %ipx wide.\n", IMG_WIDTH);
if(width != APT_IMG_WIDTH){
fprintf(stderr, "Raw image must be %ipx wide.\n", APT_IMG_WIDTH);
return 0;
}else if(bit_depth != 8){
fprintf(stderr, "Raw image must have 8 bit color.\n");
@@ -206,7 +206,7 @@ int readRawImage(char *filename, float **prow, int *nrow) {
return 1;
}

int readPalette(char *filename, rgb_t **pixels) {
int readPalette(char *filename, apt_rgb_t **pixels) {
FILE *fp = fopen(filename, "rb");
if(!fp) {
char buffer[1024];
@@ -266,10 +266,10 @@ int readPalette(char *filename, rgb_t **pixels) {

// Put into crow
for(int y = 0; y < height; y++) {
pixels[y] = (rgb_t *) malloc(sizeof(rgb_t) * width);
pixels[y] = (apt_rgb_t *) malloc(sizeof(apt_rgb_t) * width);

for(int x = 0; x < width; x++)
pixels[y][x] = (rgb_t){
pixels[y][x] = (apt_rgb_t){
PNGrows[y][x*3],
PNGrows[y][x*3 + 1],
PNGrows[y][x*3 + 2]
@@ -279,38 +279,38 @@ int readPalette(char *filename, rgb_t **pixels) {
return 1;
}

void prow2crow(float **prow, int nrow, char *palette, rgb_t **crow){
void prow2crow(float **prow, int nrow, char *palette, apt_rgb_t **crow){
for(int y = 0; y < nrow; y++){
crow[y] = (rgb_t *) malloc(sizeof(rgb_t) * IMG_WIDTH);
crow[y] = (apt_rgb_t *) malloc(sizeof(apt_rgb_t) * APT_IMG_WIDTH);

for(int x = 0; x < IMG_WIDTH; x++){
for(int x = 0; x < APT_IMG_WIDTH; x++){
if(palette == NULL)
crow[y][x].r = crow[y][x].g = crow[y][x].b = prow[y][x];
else
crow[y][x] = applyPalette(palette, prow[y][x]);
crow[y][x] = apt_applyPalette(palette, prow[y][x]);
}
}
}

int applyUserPalette(float **prow, int nrow, char *filename, rgb_t **crow){
rgb_t *pal_row[256];
int applyUserPalette(float **prow, int nrow, char *filename, apt_rgb_t **crow){
apt_rgb_t *pal_row[256];
if(!readPalette(filename, pal_row)){
fprintf(stderr, "Could not read palette\n");
return 0;
}

for(int y = 0; y < nrow; y++){
for(int x = 0; x < CH_WIDTH; x++){
int cha = CLIP(prow[y][x + CHA_OFFSET], 0, 255);
int chb = CLIP(prow[y][x + CHB_OFFSET], 0, 255);
crow[y][x + CHA_OFFSET] = pal_row[chb][cha];
for(int x = 0; x < APT_CH_WIDTH; x++){
int cha = CLIP(prow[y][x + APT_CHA_OFFSET], 0, 255);
int chb = CLIP(prow[y][x + APT_CHB_OFFSET], 0, 255);
crow[y][x + APT_CHA_OFFSET] = pal_row[chb][cha];
}
}
return 1;
}

int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, char chid, char *palette){
int ImageOut(options_t *opts, apt_image_t *img, int offset, int width, char *desc, char chid, char *palette){
char outName[512];
if(opts->filename == NULL || opts->filename[0] == '\0'){
sprintf(outName, "%s/%s-%c.png", opts->path, img->name, chid);
@@ -346,8 +346,8 @@ int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, c
for(unsigned long int i = 0; i < strlen(opts->effects); i++){
switch (opts->effects[i]) {
case Crop_Telemetry:
width -= TOTAL_TELE;
offset += SYNC_WIDTH + SPC_WIDTH;
width -= APT_TOTAL_TELE;
offset += APT_SYNC_WIDTH + APT_SPC_WIDTH;
crop_telemetry = 1;
break;
case Precipitation_Overlay:
@@ -409,7 +409,7 @@ int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, c
png_write_info(png_ptr, info_ptr);

// Move prow into crow, crow ~ color rows, if required
rgb_t *crow[MAX_HEIGHT];
apt_rgb_t *crow[APT_MAX_HEIGHT];
if(!greyscale){
prow2crow(img->prow, img->nrow, palette, crow);
}
@@ -422,9 +422,9 @@ int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, c
// Precipitation overlay
if(CONTAINS(opts->effects, Precipitation_Overlay)){
for(int y = 0; y < img->nrow; y++){
for(int x = 0; x < CH_WIDTH; x++){
if(img->prow[y][x + CHB_OFFSET] >= 198)
crow[y][x + CHB_OFFSET] = crow[y][x + CHA_OFFSET] = applyPalette(PrecipPalette, img->prow[y][x + CHB_OFFSET]-198);
for(int x = 0; x < APT_CH_WIDTH; x++){
if(img->prow[y][x + APT_CHB_OFFSET] >= 198)
crow[y][x + APT_CHB_OFFSET] = crow[y][x + APT_CHA_OFFSET] = apt_applyPalette(apt_PrecipPalette, img->prow[y][x + APT_CHB_OFFSET]-198);
}
}
}
@@ -448,13 +448,13 @@ int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, c

// Build image
for (int y = 0; y < img->nrow; y++) {
png_color pix[width]; // Color
png_byte mpix[width]; // Mono
png_color pix[APT_IMG_WIDTH]; // Color
png_byte mpix[APT_IMG_WIDTH]; // Mono

int skip = 0;
for (int x = 0; x < width; x++) {
if(crop_telemetry && x == CH_WIDTH)
skip += TELE_WIDTH + SYNC_WIDTH + SPC_WIDTH;
if(crop_telemetry && x == APT_CH_WIDTH)
skip += APT_TELE_WIDTH + APT_SYNC_WIDTH + APT_SPC_WIDTH;

if(greyscale){
mpix[x] = POWF(img->prow[y][x + skip + offset], opts->gamma)/a;
@@ -488,7 +488,7 @@ png_structp rt_png_ptr;
png_infop rt_info_ptr;
FILE *rt_pngfile;

int initWriter(options_t *opts, image_t *img, int width, int height, char *desc, char *chid){
int initWriter(options_t *opts, apt_image_t *img, int width, int height, char *desc, char *chid){
char outName[384];
sprintf(outName, "%s/%s-%s.png", opts->path, img->name, chid);

@@ -538,7 +538,7 @@ int initWriter(options_t *opts, image_t *img, int width, int height, char *desc,
}

void pushRow(float *row, int width){
png_byte pix[width];
png_byte pix[APT_IMG_WIDTH];
for(int i = 0; i < width; i++)
pix[i] = row[i];



+ 7
- 8
src/pngio.h Ver fichero

@@ -1,13 +1,12 @@
#include "apt.h"
#include "common.h"
#include "offsets.h"
#include "color.h"

int mapOverlay(char *filename, rgb_t **crow, int nrow, int zenith, int MCIR);
int mapOverlay(char *filename, apt_rgb_t **crow, int nrow, int zenith, int MCIR);
int readRawImage(char *filename, float **prow, int *nrow);
int readPalette(char *filename, rgb_t **pixels);
void prow2crow(float **prow, int nrow, char *palette, rgb_t **crow);
int applyUserPalette(float **prow, int nrow, char *filename, rgb_t **crow);
int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, char chid, char *palette);
int initWriter(options_t *opts, image_t *img, int width, int height, char *desc, char *chid);
int readPalette(char *filename, apt_rgb_t **pixels);
void prow2crow(float **prow, int nrow, char *palette, apt_rgb_t **crow);
int applyUserPalette(float **prow, int nrow, char *filename, apt_rgb_t **crow);
int ImageOut(options_t *opts, apt_image_t *img, int offset, int width, char *desc, char chid, char *palette);
int initWriter(options_t *opts, apt_image_t *img, int width, int height, char *desc, char *chid);
void pushRow(float *row, int width);
void closeWriter();

+ 52
- 52
src/satcal.h Ver fichero

@@ -32,94 +32,94 @@ const struct {
} satcal[] = {
{ // NOAA 15
{ // PRT coefficient d0, d1, d2
{276.60157, 0.051045, 1.36328E-06},
{276.62531, 0.050909, 1.47266E-06},
{276.67413, 0.050907, 1.47656E-06},
{276.59258, 0.050966, 1.47656E-06}
{276.60157f, 0.051045f, 1.36328E-06f},
{276.62531f, 0.050909f, 1.47266E-06f},
{276.67413f, 0.050907f, 1.47656E-06f},
{276.59258f, 0.050966f, 1.47656E-06f}
},
{ // Channel radiance coefficient vc, A, B
{925.4075, 0.337810, 0.998719}, // Channel 4
{839.8979, 0.304558, 0.999024}, // Channel 5
{2695.9743, 1.621256, 0.998015} // Channel 3B
{925.4075f, 0.337810f, 0.998719f}, // Channel 4
{839.8979f, 0.304558f, 0.999024f}, // Channel 5
{2695.9743f, 1.621256f, 0.998015f} // Channel 3B
},
{ // Nonlinear radiance correction Ns, b0, b1, b2
{-4.50, {4.76, -0.0932, 0.0004524}}, // Channel 4
{-3.61, {3.83, -0.0659, 0.0002811}}, // Channel 5
{0.0, {0.0, 0.0, 0.0}} // Channel 3B
{-4.50f, {4.76f, -0.0932f, 0.0004524f}}, // Channel 4
{-3.61f, {3.83f, -0.0659f, 0.0002811f}}, // Channel 5
{0.0f, {0.0f, 0.0f, 0.0f}} // Channel 3B
}
},
{ // NOAA 16
{ // PRT coeff d0, d1, d2
{276.355, 5.562E-02, -1.590E-05},
{276.142, 5.605E-02, -1.707E-05},
{275.996, 5.486E-02, -1.223E-05},
{276.132, 5.494E-02, -1.344E-05}
{276.355f, 5.562E-02f, -1.590E-05f},
{276.142f, 5.605E-02f, -1.707E-05f},
{275.996f, 5.486E-02f, -1.223E-05f},
{276.132f, 5.494E-02f, -1.344E-05f}
},
{ // Channel radiance coefficient vc, A, B
{917.2289, 0.332380, 0.998522}, // Channel 4
{838.1255, 0.674623, 0.998363}, // Channel 5
{2700.1148, 1.592459, 0.998147} // Channel 3B
{917.2289f, 0.332380f, 0.998522f}, // Channel 4
{838.1255f, 0.674623f, 0.998363f}, // Channel 5
{2700.1148f, 1.592459f, 0.998147f} // Channel 3B
},
{ // Nonlinear radiance correction Ns, b0, b1, b2
{-2.467, {2.96, -0.05411, 0.00024532}}, // Channel 4
{-2.009, {2.25, -0.03665, 0.00014854}}, // Channel 5
{0.0, {0.0, 0.0, 0.0}} // Channel 3B
{-2.467f, {2.96f, -0.05411f, 0.00024532f}}, // Channel 4
{-2.009f, {2.25f, -0.03665f, 0.00014854f}}, // Channel 5
{0.0f, {0.0f, 0.0f, 0.0f}} // Channel 3B
}
},
{ // NOAA 17
{ // PRT coefficient d0, d1, d2
{276.628, 0.05098, 1.371e-06},
{276.538, 0.05098, 1.371e-06},
{276.761, 0.05097, 1.369e-06},
{276.660, 0.05100, 1.348e-06}
{276.628f, 0.05098f, 1.371e-06f},
{276.538f, 0.05098f, 1.371e-06f},
{276.761f, 0.05097f, 1.369e-06f},
{276.660f, 0.05100f, 1.348e-06f}
},
{ // Channel radiance coefficient vc, A, B
{926.2947, 0.271683, 0.998794}, // Channel 4
{839.8246, 0.309180, 0.999012}, // Channel 5
{2669.3554, 1.702380, 0.997378} // Channel 3B
{926.2947f, 0.271683f, 0.998794f}, // Channel 4
{839.8246f, 0.309180f, 0.999012f}, // Channel 5
{2669.3554f, 1.702380f, 0.997378f} // Channel 3B
},
{ // Nonlinear radiance correction Ns, b0, b1, b2
{-8.55, {8.22, -0.15795, 0.00075579}}, // Channel 4
{-3.97, {4.31, -0.07318, 0.00030976}}, // Channel 5
{0.0, {0.0, 0.0, 0.0}} // Channel 3B
{-8.55f, {8.22f, -0.15795f, 0.00075579f}}, // Channel 4
{-3.97f, {4.31f, -0.07318f, 0.00030976f}}, // Channel 5
{0.0f, {0.0f, 0.0f, 0.0f}} // Channel 3B
}
},
{ // NOAA 18
{ // PRT coefficient d0, d1, d2
{276.601, 0.05090, 1.657e-06},
{276.683, 0.05101, 1.482e-06},
{276.565, 0.05117, 1.313e-06},
{276.615, 0.05103, 1.484e-06}
{276.601f, 0.05090f, 1.657e-06f},
{276.683f, 0.05101f, 1.482e-06f},
{276.565f, 0.05117f, 1.313e-06f},
{276.615f, 0.05103f, 1.484e-06f}
},
{ // Channel radiance coefficient vc, A, B
{928.1460, 0.436645, 0.998607}, // Channel 4
{833.2532, 0.253179, 0.999057}, // Channel 5
{2659.7952, 1.698704, 0.996960} // Channel 3B
{928.1460f, 0.436645f, 0.998607f}, // Channel 4
{833.2532f, 0.253179f, 0.999057f}, // Channel 5
{2659.7952f, 1.698704f, 0.996960f} // Channel 3B
},
{ // Nonlinear radiance correction Ns, b0, b1, b2
{-5.53, {5.82, -0.11069, 0.00052337}}, // Channel 4
{-2.22, {2.67, -0.04360, 0.00017715}}, // Channel 5
{0.0, {0.0, 0.0, 0.0}} // Channel 3B
{-5.53f, {5.82f, -0.11069f, 0.00052337f}}, // Channel 4
{-2.22f, {2.67f, -0.04360f, 0.00017715f}}, // Channel 5
{0.0f, {0.0f, 0.0f, 0.0f}} // Channel 3B
}
},
{ // NOAA 19
{ // PRT coefficient d0, d1, d2
{276.6067, 0.051111, 1.405783E-06},
{276.6119, 0.051090, 1.496037E-06},
{276.6311, 0.051033, 1.496990E-06},
{276.6268, 0.051058, 1.493110E-06}
{276.6067f, 0.051111f, 1.405783E-06f},
{276.6119f, 0.051090f, 1.496037E-06f},
{276.6311f, 0.051033f, 1.496990E-06f},
{276.6268f, 0.051058f, 1.493110E-06f}
},
{ // Channel radiance coefficient vc, A, B
{928.9, 0.53959, 0.998534}, // Channel 4
{831.9, 0.36064, 0.998913}, // Channel 5
{2670.0, 1.67396, 0.997364} // Channel 3B
{928.9f, 0.53959f, 0.998534f}, // Channel 4
{831.9f, 0.36064f, 0.998913f}, // Channel 5
{2670.0f, 1.67396f, 0.997364f} // Channel 3B
},
{ // Nonlinear radiance correction Ns, b0, b1, b2
{-5.49, {5.70 -0.11187, 0.00054668}}, // Channel 4
{-3.39, {3.58 -0.05991, 0.00024985}}, // Channel 5
{0.0, {0.0, 0.0, 0.0}} // Channel 3B
{-5.49f, {5.70f, -0.11187f, 0.00054668f}}, // Channel 4
{-3.39f, {3.58f, -0.05991f, 0.00024985f}}, // Channel 5
{0.0f, {0.0f, 0.0f, 0.0f}} // Channel 3B
}
}};

const float c1 = 1.1910427e-5;
const float c2 = 1.4387752;
const float c1 = 1.1910427e-5f;
const float c2 = 1.4387752f;

Cargando…
Cancelar
Guardar