/* * This file is part of Aptdec. * Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019-2020 * * Aptdec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include #include #include #include #include #include #include #include #include #include "common.h" #include "offsets.h" // DSP extern int init_dsp(double F); extern int getpixelrow(float *pixelv, int nrow, int *zenith, int reset); // I/O extern int readRawImage(char *filename, float **prow, int *nrow); extern int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, char *chid, char *palette); extern int initWriter(options_t *opts, image_t *img, int width, int height, char *desc, char *chid); extern void pushRow(float *row, int width); extern void closeWriter(); // Image functions extern int calibrate(float **prow, int nrow, int offset, int width); extern void histogramEqualise(float **prow, int nrow, int offset, int width); extern void linearEnhance(float **prow, int nrow, int offset, int width); extern void temperature(options_t *opts, image_t *img, int offset, int width); extern void denoise(float **prow, int nrow, int offset, int width); extern void distrib(options_t *opts, image_t *img, char *chid); extern void flipImage(image_t *img, int width, int offset); // Palettes extern char GviPalette[256*3]; extern char TempPalette[256*3]; // Audio file static SNDFILE *audioFile; // Number of channels in audio file int channels = 1; // Function declarations static int initsnd(char *filename); int getsample(float *sample, int nb); static int processAudio(char *filename, options_t *opts); static void usage(void); int main(int argc, char **argv) { fprintf(stderr, VERSION"\n"); // Check if there are actually any input files if(argc == optind || argc == 1){ fprintf(stderr, "No input files provided.\n"); usage(); } options_t opts = { "r", "", 19, "", ".", 0, "" }; // Parse arguments int opt; while ((opt = getopt(argc, argv, "o:m:d:i:s:e:rp:")) != EOF) { switch (opt) { case 'd': opts.path = optarg; break; case 'm': opts.map = optarg; break; case 'i': opts.type = optarg; break; case 's': opts.satnum = atoi(optarg); if(opts.satnum < 15 || opts.satnum > 19){ fprintf(stderr, "Invalid satellite number, it must be the range 15-19\n"); exit(EPERM); } break; case 'e': opts.effects = optarg; break; case 'r': opts.realtime = 1; break; case 'o': opts.filename = optarg; break; case 'p': opts.palette = optarg; break; default: usage(); } } // Process the files for (; optind < argc; optind++) { processAudio(argv[optind], &opts); } exit(0); } static int processAudio(char *filename, options_t *opts){ // Image info struct image_t img; // Mapping between wedge value and channel ID static struct { char *id[7]; char *name[7]; } ch = { { "?", "1", "2", "3A", "4", "5", "3B" }, { "unknown", "visble", "near-infrared", "mid-infrared", "thermal-infrared", "thermal-infrared", "mid-infrared" } }; // Buffer for image channel char desc[60]; // Parse file path char path[256], extension[32]; strcpy(path, filename); strcpy(path, dirname(path)); sscanf(basename(filename), "%[^.].%s", img.name, extension); if(opts->realtime){ // Set output filename to current time when in realtime mode time_t t; time(&t); strncpy(img.name, ctime(&t), 24); // Init a row writer initWriter(opts, &img, IMG_WIDTH, MAX_HEIGHT, "Unprocessed realtime image", "r"); } if(strcmp(extension, "png") == 0){ // Read PNG into image buffer printf("Reading %s\n", filename); if(readRawImage(filename, img.prow, &img.nrow) == 0){ fprintf(stderr, "Skipping %s\n", img.name); return 0; } }else{ // Attempt to open the audio file if (initsnd(filename) == 0) exit(EPERM); // Build image // TODO: multithreading, would require some sort of input buffer for (img.nrow = 0; img.nrow < MAX_HEIGHT; img.nrow++) { // Allocate memory for this row img.prow[img.nrow] = (float *) malloc(sizeof(float) * 2150); // Write into memory and break the loop when there are no more samples to read if (getpixelrow(img.prow[img.nrow], img.nrow, &img.zenith, (img.nrow == 0)) == 0) break; if(opts->realtime) pushRow(img.prow[img.nrow], IMG_WIDTH); fprintf(stderr, "Row: %d\r", img.nrow); fflush(stderr); } // Close stream sf_close(audioFile); } if(opts->realtime) closeWriter(); printf("Total rows: %d\n", img.nrow); // Fallback for detecting the zenith // TODO: encode metadata in raw images if(opts->map != NULL && opts->map[0] != '\0' && img.zenith == 0){ fprintf(stderr, "Guessing zenith in image, map will most likely be misaligned.\n"); img.zenith = img.nrow / 2; } // Calibrate img.chA = calibrate(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH); img.chB = calibrate(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH); printf("Channel A: %s (%s)\n", ch.id[img.chA], ch.name[img.chA]); printf("Channel B: %s (%s)\n", ch.id[img.chB], ch.name[img.chB]); // Denoise if(CONTAINS(opts->effects, Denoise)){ denoise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH); denoise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH); } // Flip, for southbound passes if(CONTAINS(opts->effects, Flip_Image)){ flipImage(&img, CH_WIDTH, CHA_OFFSET); flipImage(&img, CH_WIDTH, CHB_OFFSET); } // Temperature if (CONTAINS(opts->type, Temperature) && img.chB >= 4) { temperature(opts, &img, CHB_OFFSET, CH_WIDTH); ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, "Temperature", Temperature, (char *)TempPalette); } // MCIR if (CONTAINS(opts->type, MCIR)) ImageOut(opts, &img, CHA_OFFSET, CH_WIDTH, "MCIR", MCIR, NULL); // Linear equalise if(CONTAINS(opts->effects, Linear_Equalise)){ linearEnhance(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH); linearEnhance(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH); } // Histogram equalise if(CONTAINS(opts->effects, Histogram_Equalise)){ histogramEqualise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH); histogramEqualise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH); } // Raw image if (CONTAINS(opts->type, Raw_Image)) { sprintf(desc, "%s (%s) & %s (%s)", ch.id[img.chA], ch.name[img.chA], ch.id[img.chB], ch.name[img.chB]); ImageOut(opts, &img, 0, IMG_WIDTH, desc, Raw_Image, NULL); } // Palette image if (CONTAINS(opts->type, Palleted)) { img.palette = opts->palette; strcpy(desc, "Palette composite"); ImageOut(opts, &img, CHA_OFFSET, 909, desc, Palleted, NULL); } // Channel A if (CONTAINS(opts->type, Channel_A)) { sprintf(desc, "%s (%s)", ch.id[img.chA], ch.name[img.chA]); ImageOut(opts, &img, CHA_OFFSET, CH_WIDTH, desc, Channel_A, NULL); } // Channel B if (CONTAINS(opts->type, Channel_B)) { sprintf(desc, "%s (%s)", ch.id[img.chB], ch.name[img.chB]); ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, desc, Channel_B, NULL); } // Value distribution image if (CONTAINS(opts->type, Distribution)) distrib(opts, &img, Distribution); return 1; } static int initsnd(char *filename) { SF_INFO infwav; int res; // Open audio file infwav.format = 0; audioFile = sf_open(filename, SFM_READ, &infwav); if (audioFile == NULL) { fprintf(stderr, "Could not open %s for reading\n", filename); return 0; } res = init_dsp(infwav.samplerate); printf("Input file: %s\n", filename); if(res < 0) { fprintf(stderr, "Input sample rate too low: %d\n", infwav.samplerate); return 0; }else if(res > 0) { fprintf(stderr, "Input sample rate too high: %d\n", infwav.samplerate); return 0; } printf("Input sample rate: %d\n", infwav.samplerate); channels = infwav.channels; return 1; } // Read samples from the wave file int getsample(float *sample, int nb) { if(channels == 1){ return sf_read_float(audioFile, sample, nb); }else{ /* Multi channel audio is encoded such as: * Ch1,Ch2,Ch1,Ch2,Ch1,Ch2 */ float buf[nb * channels]; // Something like BLKIN*2 could also be used int samples = sf_read_float(audioFile, buf, nb * channels); for(int i = 0; i < nb; i++) sample[i] = buf[i * channels]; return samples / channels; } } static void usage(void) { fprintf(stderr, "Aptdec [options] audio files ...\n" "Options:\n" " -i [r|a|b|t|m|p] Output image\n" " r: Raw\n" " a: Channel A\n" " b: Channel B\n" " t: Temperature\n" " m: MCIR\n" " p: Paletted image\n" " -e [t|h|d|p|f|l] Effects\n" " t: Crop telemetry\n" " h: Histogram equalise\n" " d: Denoise\n" " p: Precipitation\n" " f: Flip image\n" " l: Linear equalise\n" " -o Output filename\n" " -d Image destination directory.\n" " -s [15-19] Satellite number\n" " -m Map file\n" " -p Path to palette\n" " -r Realtime decode\n" "\nRefer to the README for more infomation\n"); exit(EINVAL); }