/*
* This file is part of Aptdec.
* Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019-2020
*
* Aptdec is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "common.h"
#include "offsets.h"
// DSP
extern int init_dsp(double F);
extern int getpixelrow(float *pixelv, int nrow, int *zenith, int reset);
// I/O
extern int readRawImage(char *filename, float **prow, int *nrow);
extern int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, char *chid, char *palette);
extern int initWriter(options_t *opts, image_t *img, int width, int height, char *desc, char *chid);
extern void pushRow(float *row, int width);
extern void closeWriter();
// Image functions
extern int calibrate(float **prow, int nrow, int offset, int width);
extern void histogramEqualise(float **prow, int nrow, int offset, int width);
extern void linearEnhance(float **prow, int nrow, int offset, int width);
extern void temperature(options_t *opts, image_t *img, int offset, int width);
extern void denoise(float **prow, int nrow, int offset, int width);
extern void distrib(options_t *opts, image_t *img, char *chid);
extern void flipImage(image_t *img, int width, int offset);
// Palettes
extern char GviPalette[256*3];
extern char TempPalette[256*3];
// Audio file
static SNDFILE *audioFile;
// Number of channels in audio file
int channels = 1;
// Function declarations
static int initsnd(char *filename);
int getsample(float *sample, int nb);
static int processAudio(char *filename, options_t *opts);
static void usage(void);
int main(int argc, char **argv) {
fprintf(stderr, VERSION"\n");
// Check if there are actually any input files
if(argc == optind || argc == 1){
fprintf(stderr, "No input files provided.\n");
usage();
}
options_t opts = { "r", "", 19, "", ".", 0, "" };
// Parse arguments
int opt;
while ((opt = getopt(argc, argv, "o:m:d:i:s:e:rp:")) != EOF) {
switch (opt) {
case 'd':
opts.path = optarg;
break;
case 'm':
opts.map = optarg;
break;
case 'i':
opts.type = optarg;
break;
case 's':
opts.satnum = atoi(optarg);
if(opts.satnum < 15 || opts.satnum > 19){
fprintf(stderr, "Invalid satellite number, it must be the range 15-19\n");
exit(EPERM);
}
break;
case 'e':
opts.effects = optarg;
break;
case 'r':
opts.realtime = 1;
break;
case 'o':
opts.filename = optarg;
break;
case 'p':
opts.palette = optarg;
break;
default:
usage();
}
}
// Process the files
for (; optind < argc; optind++) {
processAudio(argv[optind], &opts);
}
exit(0);
}
static int processAudio(char *filename, options_t *opts){
// Image info struct
image_t img;
// Mapping between wedge value and channel ID
static struct {
char *id[7];
char *name[7];
} ch = {
{ "?", "1", "2", "3A", "4", "5", "3B" },
{ "unknown", "visble", "near-infrared", "mid-infrared", "thermal-infrared", "thermal-infrared", "mid-infrared" }
};
// Buffer for image channel
char desc[60];
// Parse file path
char path[256], extension[32];
strcpy(path, filename);
strcpy(path, dirname(path));
sscanf(basename(filename), "%[^.].%s", img.name, extension);
if(opts->realtime){
// Set output filename to current time when in realtime mode
time_t t;
time(&t);
strncpy(img.name, ctime(&t), 24);
// Init a row writer
initWriter(opts, &img, IMG_WIDTH, MAX_HEIGHT, "Unprocessed realtime image", "r");
}
if(strcmp(extension, "png") == 0){
// Read PNG into image buffer
printf("Reading %s\n", filename);
if(readRawImage(filename, img.prow, &img.nrow) == 0){
fprintf(stderr, "Skipping %s\n", img.name);
return 0;
}
}else{
// Attempt to open the audio file
if (initsnd(filename) == 0)
exit(EPERM);
// Build image
// TODO: multithreading, would require some sort of input buffer
for (img.nrow = 0; img.nrow < MAX_HEIGHT; img.nrow++) {
// Allocate memory for this row
img.prow[img.nrow] = (float *) malloc(sizeof(float) * 2150);
// Write into memory and break the loop when there are no more samples to read
if (getpixelrow(img.prow[img.nrow], img.nrow, &img.zenith, (img.nrow == 0)) == 0)
break;
if(opts->realtime) pushRow(img.prow[img.nrow], IMG_WIDTH);
fprintf(stderr, "Row: %d\r", img.nrow);
fflush(stderr);
}
// Close stream
sf_close(audioFile);
}
if(opts->realtime) closeWriter();
printf("Total rows: %d\n", img.nrow);
// Fallback for detecting the zenith
// TODO: encode metadata in raw images
if(opts->map != NULL && opts->map[0] != '\0' && img.zenith == 0){
fprintf(stderr, "Guessing zenith in image, map will most likely be misaligned.\n");
img.zenith = img.nrow / 2;
}
// Calibrate
img.chA = calibrate(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
img.chB = calibrate(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
printf("Channel A: %s (%s)\n", ch.id[img.chA], ch.name[img.chA]);
printf("Channel B: %s (%s)\n", ch.id[img.chB], ch.name[img.chB]);
// Denoise
if(CONTAINS(opts->effects, Denoise)){
denoise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
denoise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
}
// Flip, for southbound passes
if(CONTAINS(opts->effects, Flip_Image)){
flipImage(&img, CH_WIDTH, CHA_OFFSET);
flipImage(&img, CH_WIDTH, CHB_OFFSET);
}
// Temperature
if (CONTAINS(opts->type, Temperature) && img.chB >= 4) {
temperature(opts, &img, CHB_OFFSET, CH_WIDTH);
ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, "Temperature", Temperature, (char *)TempPalette);
}
// MCIR
if (CONTAINS(opts->type, MCIR))
ImageOut(opts, &img, CHA_OFFSET, CH_WIDTH, "MCIR", MCIR, NULL);
// Linear equalise
if(CONTAINS(opts->effects, Linear_Equalise)){
linearEnhance(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
linearEnhance(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
}
// Histogram equalise
if(CONTAINS(opts->effects, Histogram_Equalise)){
histogramEqualise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
histogramEqualise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
}
// Raw image
if (CONTAINS(opts->type, Raw_Image)) {
sprintf(desc, "%s (%s) & %s (%s)", ch.id[img.chA], ch.name[img.chA], ch.id[img.chB], ch.name[img.chB]);
ImageOut(opts, &img, 0, IMG_WIDTH, desc, Raw_Image, NULL);
}
// Palette image
if (CONTAINS(opts->type, Palleted)) {
img.palette = opts->palette;
strcpy(desc, "Palette composite");
ImageOut(opts, &img, CHA_OFFSET, 909, desc, Palleted, NULL);
}
// Channel A
if (CONTAINS(opts->type, Channel_A)) {
sprintf(desc, "%s (%s)", ch.id[img.chA], ch.name[img.chA]);
ImageOut(opts, &img, CHA_OFFSET, CH_WIDTH, desc, Channel_A, NULL);
}
// Channel B
if (CONTAINS(opts->type, Channel_B)) {
sprintf(desc, "%s (%s)", ch.id[img.chB], ch.name[img.chB]);
ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, desc, Channel_B, NULL);
}
// Value distribution image
if (CONTAINS(opts->type, Distribution))
distrib(opts, &img, Distribution);
return 1;
}
static int initsnd(char *filename) {
SF_INFO infwav;
int res;
// Open audio file
infwav.format = 0;
audioFile = sf_open(filename, SFM_READ, &infwav);
if (audioFile == NULL) {
fprintf(stderr, "Could not open %s for reading\n", filename);
return 0;
}
res = init_dsp(infwav.samplerate);
printf("Input file: %s\n", filename);
if(res < 0) {
fprintf(stderr, "Input sample rate too low: %d\n", infwav.samplerate);
return 0;
}else if(res > 0) {
fprintf(stderr, "Input sample rate too high: %d\n", infwav.samplerate);
return 0;
}
printf("Input sample rate: %d\n", infwav.samplerate);
channels = infwav.channels;
return 1;
}
// Read samples from the wave file
int getsample(float *sample, int nb) {
if(channels == 1){
return sf_read_float(audioFile, sample, nb);
}else{
/* Multi channel audio is encoded such as:
* Ch1,Ch2,Ch1,Ch2,Ch1,Ch2
*/
float buf[nb * channels]; // Something like BLKIN*2 could also be used
int samples = sf_read_float(audioFile, buf, nb * channels);
for(int i = 0; i < nb; i++) sample[i] = buf[i * channels];
return samples / channels;
}
}
static void usage(void) {
fprintf(stderr,
"Aptdec [options] audio files ...\n"
"Options:\n"
" -i [r|a|b|t|m|p] Output image\n"
" r: Raw\n"
" a: Channel A\n"
" b: Channel B\n"
" t: Temperature\n"
" m: MCIR\n"
" p: Paletted image\n"
" -e [t|h|d|p|f|l] Effects\n"
" t: Crop telemetry\n"
" h: Histogram equalise\n"
" d: Denoise\n"
" p: Precipitation\n"
" f: Flip image\n"
" l: Linear equalise\n"
" -o Output filename\n"
" -d Image destination directory.\n"
" -s [15-19] Satellite number\n"
" -m Map file\n"
" -p Path to palette\n"
" -r Realtime decode\n"
"\nRefer to the README for more infomation\n");
exit(EINVAL);
}