/* * aptdec - A lightweight FOSS (NOAA) APT decoder * Copyright (C) 2019-2023 Xerbo (xerbo@protonmail.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "algebra.h" #include #include // Find the best linear equation to estimate the value of the // dependent variable from the independent variable linear_t linear_regression(const float *independent, const float *dependent, size_t len) { // Calculate mean of the dependent and independent variables (this is the centoid) float dependent_mean = 0.0f; float independent_mean = 0.0f; for (size_t i = 0; i < len; i++) { dependent_mean += dependent[i] / (float)len; independent_mean += independent[i] / (float)len; } // Calculate slope float a = 0.0f; { float a_numerator = 0.0f; float a_denominator = 0.0f; for (size_t i = 0; i < len; i++) { a_numerator += (independent[i] - independent_mean) * (dependent[i] - dependent_mean); a_denominator += powf(independent[i] - independent_mean, 2.0f); } a = a_numerator / a_denominator; } // We can now solve for the y-intercept since we know the slope // and the centoid, which the line must pass through float b = dependent_mean - a * independent_mean; // printf("y(x) = %fx + %f\n", a, b); return (linear_t){a, b}; } // "Sample" standard deviation float standard_deviation(const float *data, size_t len) { float mean = meanf(data, len); float deviation_mean = 0.0f; for (size_t i = 0; i < len; i++) { float deviation = data[i] - mean; deviation_mean += deviation * deviation; } return sqrtf(deviation_mean / (float)(len-1)); } float sumf(const float *x, size_t len) { float sum = 0.0f; for (size_t i = 0; i < len; i++) { sum += x[i]; } return sum; } float meanf(const float *x, size_t len) { return sumf(x, len) / (float)len; } void normalizef(float *x, size_t len) { float sum = sumf(x, len); for (size_t i = 0; i < len; i++) { x[i] /= sum; } } static int sort_func(const void *a, const void *b) { return *(float *)b > *(float *)a ? 1 : -1; } float medianf(float *data, size_t len) { qsort(data, len, sizeof(float), sort_func); if (len % 2 == 0) { return (data[len/2] + data[len/2 - 1]) / 2.0f; } else { return data[len/2]; } } float linear_calc(float x, linear_t line) { return x * line.a + line.b; } float quadratic_calc(float x, quadratic_t quadratic) { return x*x * quadratic.a + x * quadratic.b + quadratic.c; } float sincf(float x) { if (x == 0.0f) { return 1.0f; } return sinf(M_PIf * x) / (M_PIf * x); }