/* * This file is part of Aptdec. * Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019-2020 * * Aptdec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include #include #include #include #include #include #include #include #include "messages.h" #include "offsets.h" #define FAILURE 0 #define SUCCESS 1 typedef struct { char *type; // Output image type char *effects; int satnum; // The satellite number char *map; // Path to a map file char *path; // Output directory int realtime; } options_t; typedef struct { float *prow[MAX_HEIGHT]; // Row buffers int nrow; // Number of rows int chA, chB; // ID of each channel char name[256]; // Stripped filename } image_t; // DSP extern int getpixelrow(float *pixelv, int nrow, int *zenith); extern int init_dsp(double F); // I/O extern int readfcconf(char *file); extern int readRawImage(char *filename, float **prow, int *nrow); extern int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, char *chid, char *palette); extern void closeWriter(); extern void pushRow(float *row, int width); extern int initWriter(options_t *opts, image_t *img, int width, int height, char *desc, char *chid); // Image functions extern int calibrate(float **prow, int nrow, int offset, int width); extern void histogramEqualise(float **prow, int nrow, int offset, int width); extern void temperature(options_t *opts, image_t *img, int offset, int width); extern int Ngvi(float **prow, int nrow); extern void denoise(float **prow, int nrow, int offset, int width); extern void distrib(options_t *opts, image_t *img, char *chid); // Palettes extern char GviPalette[256*3]; extern char TempPalette[256*3]; // Row where the satellite is closest to the observer int zenith = 0; // Audio file static SNDFILE *audioFile; static int initsnd(char *filename); int getsample(float *sample, int nb); static int processAudio(char *filename, options_t *opts); static void usage(void); int main(int argc, char **argv) { fprintf(stderr, VERSION"\n"); if(argc == 1) usage(); // Check if there are actually any input files if(optind == argc){ fprintf(stderr, "No input files provided.\n"); usage(); } options_t opts = { "r", "", 19, "", ".", 0 }; // Parse arguments int opt; while ((opt = getopt(argc, argv, "c:m:d:i:s:e:r")) != EOF) { switch (opt) { case 'd': opts.path = optarg; break; case 'c': readfcconf(optarg); break; case 'm': opts.map = optarg; break; case 'i': opts.type = optarg; break; case 's': opts.satnum = atoi(optarg); if(opts.satnum < 15 || opts.satnum > 19){ fprintf(stderr, "Invalid satellite number, it must be the range 15-19\n"); exit(EPERM); } break; case 'e': opts.effects = optarg; break; case 'r': opts.realtime = 1; break; default: usage(); } } // Process the files for (; optind < argc; optind++) { processAudio(argv[optind], &opts); } exit(0); } static int processAudio(char *filename, options_t *opts){ // Image info struct image_t img; // Mapping between wedge value and channel ID static struct { char *id[7]; char *name[7]; } ch = { { "?", "1", "2", "3A", "4", "5", "3B" }, { "unknown", "visble", "near-infrared", "mid-infrared", "thermal-infrared", "thermal-infrared", "mid-infrared" } }; // Buffer for image channel char desc[60]; // Parse file path char path[256], extension[32]; strcpy(path, filename); strcpy(path, dirname(path)); sscanf(basename(filename), "%[^.].%s", img.name, extension); if(opts->realtime) initWriter(opts, &img, IMG_WIDTH, MAX_HEIGHT, "Unprocessed realtime image", "r"); if(strcmp(extension, "png") == 0){ // Read PNG into image buffer printf("Reading %s", filename); if(readRawImage(filename, img.prow, &img.nrow) == 0){ fprintf(stderr, "Skipping %s; see above.\n", img.name); return FAILURE; } }else{ // Attempt to open the audio file if (initsnd(filename) == 0) exit(EPERM); // Build image for (img.nrow = 0; img.nrow < MAX_HEIGHT; img.nrow++) { // Allocate memory for this row img.prow[img.nrow] = (float *) malloc(sizeof(float) * 2150); // Write into memory and break the loop when there are no more samples to read if (getpixelrow(img.prow[img.nrow], img.nrow, &zenith) == 0) break; if(opts->realtime) pushRow(img.prow[img.nrow], IMG_WIDTH); fprintf(stderr, "Row: %d\r", img.nrow); fflush(stderr); } // Close stream sf_close(audioFile); } if(opts->realtime) closeWriter(); printf("\nTotal rows: %d\n", img.nrow); // Fallback for detecting the zenith // TODO: encode zenith in raw images if(opts->map != NULL && opts->map[0] != '\0' && zenith == 0){ fprintf(stderr, "Guessing zenith in image, map will most likely be misaligned.\n"); zenith = img.nrow / 2; } // Calibrate img.chA = calibrate(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH); img.chB = calibrate(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH); printf("Channel A: %s (%s)\n", ch.id[img.chA], ch.name[img.chA]); printf("Channel B: %s (%s)\n", ch.id[img.chB], ch.name[img.chB]); // Denoise if(CONTAINS(opts->effects, 'd')){ denoise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH); denoise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH); } // Temperature if (CONTAINS(opts->type, 't') && img.chB >= 4) { temperature(opts, &img, CHB_OFFSET, CH_WIDTH); ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, "Temperature", "t", (char *)TempPalette); } // False color image if(CONTAINS(opts->type, 'c')){ if (img.chA == 2 && img.chB >= 4) { // Normal false color // TODO: use real MSA // TODO: provide more than just "natural" color images ImageOut(opts, &img, 0, CH_WIDTH, "False Color", "c", NULL); } else if (img.chB == 2) { // GVI (global vegetation index) false color Ngvi(img.prow, img.nrow); ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, "GVI False Color", "c", (char *)GviPalette); } else { fprintf(stderr, "Skipping False Color generation; lacking required channels.\n"); } } // MCIR if (CONTAINS(opts->type, 'm')) ImageOut(opts, &img, 0, IMG_WIDTH, "MCIR", "m", NULL); // Histogram equalise if(CONTAINS(opts->effects, 'h')){ histogramEqualise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH); histogramEqualise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH); } // Raw image if (CONTAINS(opts->type, 'r')) { sprintf(desc, "%s (%s) & %s (%s)", ch.id[img.chA], ch.name[img.chA], ch.id[img.chB], ch.name[img.chB]); ImageOut(opts, &img, 0, IMG_WIDTH, desc, "r", NULL); } // Channel A if (CONTAINS(opts->type, 'a')) { sprintf(desc, "%s (%s)", ch.id[img.chA], ch.name[img.chA]); ImageOut(opts, &img, CHA_OFFSET, CH_WIDTH, desc, ch.id[img.chA], NULL); } // Channel B if (CONTAINS(opts->type, 'b')) { sprintf(desc, "%s (%s)", ch.id[img.chB], ch.name[img.chB]); ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, desc, ch.id[img.chB], NULL); } // Distribution image if (CONTAINS(opts->type, 'd')) distrib(opts, &img, "d"); return SUCCESS; } static int initsnd(char *filename) { SF_INFO infwav; int res; // Open audio file infwav.format = 0; audioFile = sf_open(filename, SFM_READ, &infwav); if (audioFile == NULL) { fprintf(stderr, ERR_FILE_READ, filename); return FAILURE; } res = init_dsp(infwav.samplerate); printf("Input file: %s\n", filename); if(res < 0) { fprintf(stderr, "Input sample rate too low: %d\n", infwav.samplerate); return FAILURE; }else if(res > 0) { fprintf(stderr, "Input sample rate too high: %d\n", infwav.samplerate); return FAILURE; } printf("Input sample rate: %d\n", infwav.samplerate); // TODO: accept stereo audio if (infwav.channels != 1) { fprintf(stderr, "Too many channels in input file: %d\n", infwav.channels); return FAILURE; } return SUCCESS; } // Read samples from the wave file int getsample(float *sample, int nb) { return sf_read_float(audioFile, sample, nb); } static void usage(void) { fprintf(stderr, "Aptdec [options] audio files ...\n" "Options:\n" " -e [t|h] Effects\n" " t: Crop telemetry\n" " h: Histogram equalise\n" " d: Denoise\n" " p: Precipitation\n" " -i [r|a|b|c|t|m] Output image\n" " r: Raw\n" " a: Channel A\n" " b: Channel B\n" " c: False color\n" " t: Temperature\n" " m: MCIR\n" " -d Image destination directory.\n" " -s [15-19] Satellite number\n" " -c False color config file\n" " -m Map file\n" " -r Realtime decode"); exit(EINVAL); }