/*
* This file is part of Aptdec.
* Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019-2020
*
* Aptdec is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include "messages.h"
#include "offsets.h"
#define FAILURE 0
#define SUCCESS 1
typedef struct {
char *type; // Output image type
char *effects;
int satnum; // The satellite number
char *map; // Path to a map file
char *path; // Output directory
int realtime;
} options_t;
typedef struct {
float *prow[MAX_HEIGHT]; // Row buffers
int nrow; // Number of rows
int chA, chB; // ID of each channel
char name[256]; // Stripped filename
} image_t;
// DSP
extern int getpixelrow(float *pixelv, int nrow, int *zenith);
extern int init_dsp(double F);
// I/O
extern int readfcconf(char *file);
extern int readRawImage(char *filename, float **prow, int *nrow);
extern int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, char *chid, char *palette);
extern void closeWriter();
extern void pushRow(float *row, int width);
extern int initWriter(options_t *opts, image_t *img, int width, int height, char *desc, char *chid);
// Image functions
extern int calibrate(float **prow, int nrow, int offset, int width);
extern void histogramEqualise(float **prow, int nrow, int offset, int width);
extern void temperature(options_t *opts, image_t *img, int offset, int width);
extern int Ngvi(float **prow, int nrow);
extern void denoise(float **prow, int nrow, int offset, int width);
extern void distrib(options_t *opts, image_t *img, char *chid);
// Palettes
extern char GviPalette[256*3];
extern char TempPalette[256*3];
// Row where the satellite is closest to the observer
int zenith = 0;
// Audio file
static SNDFILE *audioFile;
static int initsnd(char *filename);
int getsample(float *sample, int nb);
static int processAudio(char *filename, options_t *opts);
static void usage(void);
int main(int argc, char **argv) {
fprintf(stderr, VERSION"\n");
if(argc == 1)
usage();
// Check if there are actually any input files
if(optind == argc){
fprintf(stderr, "No input files provided.\n");
usage();
}
options_t opts = { "r", "", 19, "", ".", 0 };
// Parse arguments
int opt;
while ((opt = getopt(argc, argv, "c:m:d:i:s:e:r")) != EOF) {
switch (opt) {
case 'd':
opts.path = optarg;
break;
case 'c':
readfcconf(optarg);
break;
case 'm':
opts.map = optarg;
break;
case 'i':
opts.type = optarg;
break;
case 's':
opts.satnum = atoi(optarg);
if(opts.satnum < 15 || opts.satnum > 19){
fprintf(stderr, "Invalid satellite number, it must be the range 15-19\n");
exit(EPERM);
}
break;
case 'e':
opts.effects = optarg;
break;
case 'r':
opts.realtime = 1;
break;
default:
usage();
}
}
// Process the files
for (; optind < argc; optind++) {
processAudio(argv[optind], &opts);
}
exit(0);
}
static int processAudio(char *filename, options_t *opts){
// Image info struct
image_t img;
// Mapping between wedge value and channel ID
static struct {
char *id[7];
char *name[7];
} ch = {
{ "?", "1", "2", "3A", "4", "5", "3B" },
{ "unknown", "visble", "near-infrared", "mid-infrared", "thermal-infrared", "thermal-infrared", "mid-infrared" }
};
// Buffer for image channel
char desc[60];
// Parse file path
char path[256], extension[32];
strcpy(path, filename);
strcpy(path, dirname(path));
sscanf(basename(filename), "%[^.].%s", img.name, extension);
if(opts->realtime) initWriter(opts, &img, IMG_WIDTH, MAX_HEIGHT, "Unprocessed realtime image", "r");
if(strcmp(extension, "png") == 0){
// Read PNG into image buffer
printf("Reading %s", filename);
if(readRawImage(filename, img.prow, &img.nrow) == 0){
fprintf(stderr, "Skipping %s; see above.\n", img.name);
return FAILURE;
}
}else{
// Attempt to open the audio file
if (initsnd(filename) == 0)
exit(EPERM);
// Build image
for (img.nrow = 0; img.nrow < MAX_HEIGHT; img.nrow++) {
// Allocate memory for this row
img.prow[img.nrow] = (float *) malloc(sizeof(float) * 2150);
// Write into memory and break the loop when there are no more samples to read
if (getpixelrow(img.prow[img.nrow], img.nrow, &zenith) == 0)
break;
if(opts->realtime) pushRow(img.prow[img.nrow], IMG_WIDTH);
fprintf(stderr, "Row: %d\r", img.nrow);
fflush(stderr);
}
// Close stream
sf_close(audioFile);
}
if(opts->realtime) closeWriter();
printf("\nTotal rows: %d\n", img.nrow);
// Fallback for detecting the zenith
// TODO: encode zenith in raw images
if(opts->map != NULL && opts->map[0] != '\0' && zenith == 0){
fprintf(stderr, "Guessing zenith in image, map will most likely be misaligned.\n");
zenith = img.nrow / 2;
}
// Calibrate
img.chA = calibrate(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
img.chB = calibrate(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
printf("Channel A: %s (%s)\n", ch.id[img.chA], ch.name[img.chA]);
printf("Channel B: %s (%s)\n", ch.id[img.chB], ch.name[img.chB]);
// Denoise
if(CONTAINS(opts->effects, 'd')){
denoise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
denoise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
}
// Temperature
if (CONTAINS(opts->type, 't') && img.chB >= 4) {
temperature(opts, &img, CHB_OFFSET, CH_WIDTH);
ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, "Temperature", "t", (char *)TempPalette);
}
// False color image
if(CONTAINS(opts->type, 'c')){
if (img.chA == 2 && img.chB >= 4) { // Normal false color
// TODO: use real MSA
// TODO: provide more than just "natural" color images
ImageOut(opts, &img, 0, CH_WIDTH, "False Color", "c", NULL);
} else if (img.chB == 2) { // GVI (global vegetation index) false color
Ngvi(img.prow, img.nrow);
ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, "GVI False Color", "c", (char *)GviPalette);
} else {
fprintf(stderr, "Skipping False Color generation; lacking required channels.\n");
}
}
// MCIR
if (CONTAINS(opts->type, 'm'))
ImageOut(opts, &img, 0, IMG_WIDTH, "MCIR", "m", NULL);
// Histogram equalise
if(CONTAINS(opts->effects, 'h')){
histogramEqualise(img.prow, img.nrow, CHA_OFFSET, CH_WIDTH);
histogramEqualise(img.prow, img.nrow, CHB_OFFSET, CH_WIDTH);
}
// Raw image
if (CONTAINS(opts->type, 'r')) {
sprintf(desc, "%s (%s) & %s (%s)", ch.id[img.chA], ch.name[img.chA], ch.id[img.chB], ch.name[img.chB]);
ImageOut(opts, &img, 0, IMG_WIDTH, desc, "r", NULL);
}
// Channel A
if (CONTAINS(opts->type, 'a')) {
sprintf(desc, "%s (%s)", ch.id[img.chA], ch.name[img.chA]);
ImageOut(opts, &img, CHA_OFFSET, CH_WIDTH, desc, ch.id[img.chA], NULL);
}
// Channel B
if (CONTAINS(opts->type, 'b')) {
sprintf(desc, "%s (%s)", ch.id[img.chB], ch.name[img.chB]);
ImageOut(opts, &img, CHB_OFFSET, CH_WIDTH, desc, ch.id[img.chB], NULL);
}
// Distribution image
if (CONTAINS(opts->type, 'd'))
distrib(opts, &img, "d");
return SUCCESS;
}
static int initsnd(char *filename) {
SF_INFO infwav;
int res;
// Open audio file
infwav.format = 0;
audioFile = sf_open(filename, SFM_READ, &infwav);
if (audioFile == NULL) {
fprintf(stderr, ERR_FILE_READ, filename);
return FAILURE;
}
res = init_dsp(infwav.samplerate);
printf("Input file: %s\n", filename);
if(res < 0) {
fprintf(stderr, "Input sample rate too low: %d\n", infwav.samplerate);
return FAILURE;
}else if(res > 0) {
fprintf(stderr, "Input sample rate too high: %d\n", infwav.samplerate);
return FAILURE;
}
printf("Input sample rate: %d\n", infwav.samplerate);
// TODO: accept stereo audio
if (infwav.channels != 1) {
fprintf(stderr, "Too many channels in input file: %d\n", infwav.channels);
return FAILURE;
}
return SUCCESS;
}
// Read samples from the wave file
int getsample(float *sample, int nb) {
return sf_read_float(audioFile, sample, nb);
}
static void usage(void) {
fprintf(stderr,
"Aptdec [options] audio files ...\n"
"Options:\n"
" -e [t|h] Effects\n"
" t: Crop telemetry\n"
" h: Histogram equalise\n"
" d: Denoise\n"
" p: Precipitation\n"
" -i [r|a|b|c|t|m] Output image\n"
" r: Raw\n"
" a: Channel A\n"
" b: Channel B\n"
" c: False color\n"
" t: Temperature\n"
" m: MCIR\n"
" -d Image destination directory.\n"
" -s [15-19] Satellite number\n"
" -c False color config file\n"
" -m Map file\n"
" -r Realtime decode");
exit(EINVAL);
}