/* * This file is part of Aptdec. * Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019-2020 * * Aptdec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include #include #include #include #include "apt.h" #include "offsets.h" #include "libs/reg.h" #include "image.h" #define REGORDER 3 typedef struct { double cf[REGORDER + 1]; } rgparam_t; // Compute regression static void rgcomp(double x[16], rgparam_t * rgpr) { // { 0.106, 0.215, 0.324, 0.433, 0.542, 0.652, 0.78, 0.87, 0.0 } const double y[9] = { 31.07, 63.02, 94.96, 126.9, 158.86, 191.1, 228.62, 255.0, 0.0 }; polyreg(REGORDER, 9, x, y, rgpr->cf); } // Convert a value to 0-255 based off the provided regression curve static double rgcal(float x, rgparam_t *rgpr) { double y, p; int i; for (i = 0, y = 0.0, p = 1.0; i < REGORDER + 1; i++) { y += rgpr->cf[i] * p; p = p * x; } return y; } static double tele[16]; static double Cs; void apt_histogramEqualise(float **prow, int nrow, int offset, int width){ // Plot histogram int histogram[256] = { 0 }; for(int y = 0; y < nrow; y++) for(int x = 0; x < width; x++) histogram[(int)CLIP(prow[y][x+offset], 0, 255)]++; // Calculate cumulative frequency long sum = 0, cf[256] = { 0 }; for(int i = 0; i < 255; i++){ sum += histogram[i]; cf[i] = sum; } // Apply histogram int area = nrow * width; for(int y = 0; y < nrow; y++){ for(int x = 0; x < width; x++){ int k = (int)prow[y][x+offset]; prow[y][x+offset] = (256.0f/area) * cf[k]; } } } void apt_linearEnhance(float **prow, int nrow, int offset, int width){ // Plot histogram int histogram[256] = { 0 }; for(int y = 0; y < nrow; y++) for(int x = 0; x < width; x++) histogram[(int)CLIP(prow[y][x+offset], 0, 255)]++; // Find min/max points int min = -1, max = -1; for(int i = 5; i < 250; i++){ if(histogram[i]/width/(nrow/255.0) > 0.1){ if(min == -1) min = i; max = i; } } // Stretch the brightness into the new range for(int y = 0; y < nrow; y++){ for(int x = 0; x < width; x++){ prow[y][x+offset] = (prow[y][x+offset]-min) / (max-min) * 255.0f; prow[y][x+offset] = CLIP(prow[y][x+offset], 0.0f, 255.0f); } } } // Brightness calibrate, including telemetry void calibrateImage(float **prow, int nrow, int offset, int width, rgparam_t regr){ offset -= SYNC_WIDTH+SPC_WIDTH; for (int y = 0; y < nrow; y++) { for (int x = 0; x < width+SYNC_WIDTH+SPC_WIDTH+TELE_WIDTH; x++) { float pv = (float)rgcal(prow[y][x + offset], ®r); prow[y][x + offset] = CLIP(pv, 0, 255); } } } double teleNoise(double wedges[16]){ double pattern[9] = { 31.07, 63.02, 94.96, 126.9, 158.86, 191.1, 228.62, 255.0, 0.0 }; double noise = 0; for(int i = 0; i < 9; i++) noise += fabs(wedges[i] - pattern[i]); return noise; } // Get telemetry data for thermal calibration int apt_calibrate(float **prow, int nrow, int offset, int width) { double teleline[APT_MAX_HEIGHT] = { 0.0 }; double wedge[16]; rgparam_t regr[APT_MAX_HEIGHT/FRAME_LEN + 1]; int telestart, mtelestart = 0; int channel = -1; // The minimum rows required to decode a full frame if (nrow < 192) { fprintf(stderr, "Telemetry decoding error, not enough rows\n"); return 0; } // Calculate average of a row of telemetry for (int y = 0; y < nrow; y++) { for (int x = 3; x < 43; x++) teleline[y] += prow[y][x + offset + width]; teleline[y] /= 40.0; } /* Wedge 7 is white and 8 is black, this will have the largest * difference in brightness, this can be used to find the current * position within the telemetry. */ float max = 0.0f; for (int n = nrow / 3 - 64; n < 2 * nrow / 3 - 64; n++) { float df; // (sum 4px below) - (sum 4px above) df = (float)((teleline[n - 4] + teleline[n - 3] + teleline[n - 2] + teleline[n - 1]) - (teleline[n + 0] + teleline[n + 1] + teleline[n + 2] + teleline[n + 3])); // Find the maximum difference if (df > max) { mtelestart = n; max = df; } } telestart = (mtelestart + 64) % FRAME_LEN; // Make sure that theres at least one full frame in the image if (nrow < telestart + FRAME_LEN) { fprintf(stderr, "Telemetry decoding error, not enough rows\n"); return 0; } // Find the least noisy frame double minNoise = -1; int bestFrame = -1; for (int n = telestart, k = 0; n < nrow - FRAME_LEN; n += FRAME_LEN, k++) { int j; for (j = 0; j < 16; j++) { int i; wedge[j] = 0.0; for (i = 1; i < 7; i++) wedge[j] += teleline[n + j * 8 + i]; wedge[j] /= 6; } double noise = teleNoise(wedge); if(noise < minNoise || minNoise == -1){ minNoise = noise; bestFrame = k; // Compute & apply regression on the wedges rgcomp(wedge, ®r[k]); for (int j = 0; j < 16; j++) tele[j] = (float)rgcal((float)wedge[j], ®r[k]); /* Compare the channel ID wedge to the reference * wedges, the wedge with the closest match will * be the channel ID */ float min = -1; for (int j = 0; j < 6; j++) { float df = (float)(tele[15] - tele[j]); df *= df; if (df < min || min == -1) { channel = j; min = df; } } // Find the brightness of the minute marker, I don't really know what for Cs = 0.0; int i, j = n; for (i = 0, j = n; j < n + FRAME_LEN; j++) { float csline = 0.0; for (int l = 3; l < 43; l++) csline += prow[n][l + offset - SPC_WIDTH]; csline /= 40.0; if (csline > 50.0) { Cs += csline; i++; } } Cs = rgcal((float)(Cs / i), ®r[k]); } } if(bestFrame == -1){ fprintf(stderr, "Something has gone very wrong, please file a bug report.\n"); return 0; } calibrateImage(prow, nrow, offset, width, regr[bestFrame]); return channel + 1; } extern float quick_select(float arr[], int n); // Biased median denoise, pretyt ugly #define TRIG_LEVEL 40 void apt_denoise(float **prow, int nrow, int offset, int width){ for(int y = 2; y < nrow-2; y++){ for(int x = offset+1; x < offset+width-1; x++){ if(prow[y][x+1] - prow[y][x] > TRIG_LEVEL || prow[y][x-1] - prow[y][x] > TRIG_LEVEL || prow[y+1][x] - prow[y][x] > TRIG_LEVEL || prow[y-1][x] - prow[y][x] > TRIG_LEVEL){ prow[y][x] = quick_select((float[]){ prow[y+2][x-1], prow[y+2][x], prow[y+2][x+1], prow[y+1][x-1], prow[y+1][x], prow[y+1][x+1], prow[y-1][x-1], prow[y-1][x], prow[y-1][x+1], prow[y-2][x-1], prow[y-2][x], prow[y-2][x+1] }, 12); } } } } #undef TRIG_LEVEL // Flips a channel, for northbound passes void apt_flipImage(apt_image_t *img, int width, int offset){ for(int y = 1; y < img->nrow; y++){ for(int x = 1; x < ceil(width / 2.0); x++){ // Flip top-left & bottom-right float buffer = img->prow[img->nrow - y][offset + x]; img->prow[img->nrow - y][offset + x] = img->prow[y][offset + (width - x)]; img->prow[y][offset + (width - x)] = buffer; } } } // Calculate crop to reomve noise from the start and end of an image int apt_cropNoise(apt_image_t *img){ #define NOISE_THRESH 180.0 // Average value of minute marker float spc_rows[APT_MAX_HEIGHT] = { 0.0 }; int startCrop = 0; int endCrop = img->nrow; for(int y = 0; y < img->nrow; y++) { for(int x = 0; x < SPC_WIDTH; x++) { spc_rows[y] += img->prow[y][x + (CHB_OFFSET - SPC_WIDTH)]; } spc_rows[y] /= SPC_WIDTH; // Skip minute markings if(spc_rows[y] < 10) { spc_rows[y] = spc_rows[y-1]; } } // 3 row average for(int y = 0; y < img->nrow; y++){ spc_rows[y] = (spc_rows[y+1] + spc_rows[y+2] + spc_rows[y+3])/3; //img.prow[y][0] = spc_rows[y]; } // Find ends for(int y = 0; y < img->nrow-1; y++) { if(spc_rows[y] > NOISE_THRESH){ endCrop = y; } } for(int y = img->nrow; y > 0; y--) { if(spc_rows[y] > NOISE_THRESH) { startCrop = y; } } //printf("Crop rows: %i -> %i\n", startCrop, endCrop); // Remove the noisy rows at start for(int y = 0; y < img->nrow-startCrop; y++) { memmove(img->prow[y], img->prow[y+startCrop], sizeof(float)*2150); } // Ignore the noisy rows at the end img->nrow = (endCrop - startCrop); return startCrop; } // --- Temperature Calibration --- // #include "satcal.h" typedef struct { double Nbb; double Cs; double Cb; int ch; } tempparam_t; // IR channel temperature compensation static void tempcomp(double t[16], int ch, int satnum, tempparam_t *tpr) { double Tbb, T[4]; double C; tpr->ch = ch - 4; // Compute equivalent T blackbody temperature for (int n = 0; n < 4; n++) { float d0, d1, d2; C = t[9 + n] * 4.0; d0 = satcal[satnum].d[n][0]; d1 = satcal[satnum].d[n][1]; d2 = satcal[satnum].d[n][2]; T[n] = d0; T[n] += d1 * C; C *= C; T[n] += d2 * C; } Tbb = (T[0] + T[1] + T[2] + T[3]) / 4.0; Tbb = satcal[satnum].rad[tpr->ch].A + satcal[satnum].rad[tpr->ch].B * Tbb; // Compute blackbody radiance temperature C = satcal[satnum].rad[tpr->ch].vc; tpr->Nbb = c1 * C * C * C / (expm1(c2 * C / Tbb)); // Store blackbody count and space tpr->Cs = Cs * 4.0; tpr->Cb = t[14] * 4.0; } // IR channel temperature calibration static double tempcal(float Ce, int satnum, tempparam_t * rgpr) { double Nl, Nc, Ns, Ne; double T, vc; Ns = satcal[satnum].cor[rgpr->ch].Ns; Nl = Ns + (rgpr->Nbb - Ns) * (rgpr->Cs - Ce * 4.0) / (rgpr->Cs - rgpr->Cb); Nc = satcal[satnum].cor[rgpr->ch].b[0] + satcal[satnum].cor[rgpr->ch].b[1] * Nl + satcal[satnum].cor[rgpr->ch].b[2] * Nl * Nl; Ne = Nl + Nc; vc = satcal[satnum].rad[rgpr->ch].vc; T = c2 * vc / log(c1 * vc * vc * vc / Ne + 1.0); T = (T - satcal[satnum].rad[rgpr->ch].A) / satcal[satnum].rad[rgpr->ch].B; // Convert to celsius T -= 273.15; // Rescale to 0-255 for -120°C to +40°C T = (T + 100.0) / 160.0 * 255.0; return T; } // Temperature calibration wrapper void temperature(options_t *opts, apt_image_t *img, int offset, int width){ tempparam_t temp; printf("Temperature... "); fflush(stdout); tempcomp(tele, img->chB, opts->satnum - 15, &temp); for (int y = 0; y < img->nrow; y++) { for (int x = 0; x < width; x++) { img->prow[y][x + offset] = (float)tempcal(img->prow[y][x + offset], opts->satnum - 15, &temp); } } printf("Done\n"); }