/*
* This file is part of Aptdec.
* Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019-2020
*
* Aptdec is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include
#include
#include
#include
#include
#include "offsets.h"
#include "messages.h"
#define REGORDER 3
typedef struct {
double cf[REGORDER + 1];
} rgparam_t;
typedef struct {
float *prow[3000]; // Row buffers
int nrow; // Number of rows
int chA, chB; // ID of each channel
char name[256]; // Stripped filename
} image_t;
typedef struct {
char *type; // Output image type
char *effects;
int satnum; // The satellite number
char *map; // Path to a map file
char *path; // Output directory
} options_t;
extern void polyreg(const int m, const int n, const double x[], const double y[], double c[]);
// Compute regression
static void rgcomp(double x[16], rgparam_t * rgpr) {
// { 0.106, 0.215, 0.324, 0.433, 0.542, 0.652, 0.78, 0.87, 0.0 }
const double y[9] = { 31.07, 63.02, 94.96, 126.9, 158.86, 191.1, 228.62, 255.0, 0.0 };
polyreg(REGORDER, 9, x, y, rgpr -> cf);
}
// Convert a value to 0-255 based off the provided regression curve
static double rgcal(float x, rgparam_t *rgpr) {
double y, p;
int i;
for (i = 0, y = 0.0, p = 1.0; i < REGORDER + 1; i++) {
y += rgpr->cf[i] * p;
p = p * x;
}
return(y);
}
static double tele[16];
static double Cs;
static int nbtele;
void histogramEqualise(float **prow, int nrow, int offset, int width){
// Plot histogram
int histogram[256] = { 0 };
for(int y = 0; y < nrow; y++)
for(int x = 0; x < width; x++)
histogram[(int)floor(prow[y][x+offset])]++;
// Find min/max points
int min = -1, max = -1;
for(int i = 5; i < 250; i++){
if(histogram[i]/width/(nrow/255.0) > 0.2){
if(min == -1)
min = i;
max = i;
}
}
//printf("Column %i-%i: Min: %i, Max %i\n", offset, offset+width, min, max);
// Spread values to avoid overshoot
min -= 5; max += 5;
// Stretch the brightness into the new range
for(int y = 0; y < nrow; y++)
for(int x = 0; x < width; x++)
prow[y][x+offset] = CLIP((prow[y][x+offset]-min) / (max-min) * 255.0, 0, 255);
}
// Brightness calibrate, including telemetry
void calibrateBrightness(float **prow, int nrow, int offset, int width, int telestart, rgparam_t regr[30]){
offset -= SYNC_WIDTH+SPC_WIDTH;
for (int n = 0; n < nrow; n++) {
float *pixelv = prow[n];
for (int i = 0; i < width+SYNC_WIDTH+SPC_WIDTH+TELE_WIDTH; i++) {
float pv = pixelv[i + offset];
// Blend between the calculated regression curves
/* FIXME: this can actually make the image look *worse*
* if the signal has a constant input gain.
*/
/*int k, kof;
k = (n - telestart) / FRAME_LEN;
if (k >= nbtele)
k = nbtele - 1;
kof = (n - telestart) % FRAME_LEN;
if (kof < 64) {
if (k < 1) {*/
pv = rgcal(pv, &(regr[4]));
/*} else {
pv = rgcal(pv, &(regr[k])) * (64 + kof) / FRAME_LEN +
rgcal(pv, &(regr[k - 1])) * (64 - kof) / FRAME_LEN;
}
} else {
if ((k + 1) >= nbtele) {
pv = rgcal(pv, &(regr[k]));
} else {
pv = rgcal(pv, &(regr[k])) * (192 - kof) / FRAME_LEN +
rgcal(pv, &(regr[k + 1])) * (kof - 64) / FRAME_LEN;
}
}
*/
pv = CLIP(pv, 0, 255);
pixelv[i + offset] = pv;
}
}
}
// Get telemetry data for thermal calibration/equalization
int calibrate(float **prow, int nrow, int offset, int width) {
double teleline[3000] = { 0.0 };
double wedge[16];
rgparam_t regr[30];
int n, k;
int mtelestart = 0, telestart;
int channel = -1;
// Calculate average of a row of telemetry
for (n = 0; n < nrow; n++) {
float *pixelv = prow[n];
// Average the center 40px
for (int i = 3; i < 43; i++) teleline[n] += pixelv[i + offset + width];
teleline[n] /= 40.0;
}
// The minimum rows required to decode a full frame
if (nrow < 192) {
fprintf(stderr, ERR_TELE_ROW);
return(0);
}
/* Wedge 7 is white and 8 is black, which will have the largest
* difference in brightness, this will always be in the center of
* the frame and can thus be used to find the start of the frame
*/
double max = 0.0;
for (n = nrow / 3 - 64; n < 2 * nrow / 3 - 64; n++) {
float df;
// (sum 4px below) / (sum 4px above)
df = (teleline[n - 4] + teleline[n - 3] + teleline[n - 2] + teleline[n - 1]) /
(teleline[n + 0] + teleline[n + 1] + teleline[n + 2] + teleline[n + 3]);
// Find the maximum difference
if (df > max) {
mtelestart = n;
max = df;
}
}
// Find the start of the first frame
telestart = (mtelestart - FRAME_LEN/2) % FRAME_LEN;
// Make sure that theres at least one full frame in the image
if (nrow < telestart + FRAME_LEN) {
fprintf(stderr, ERR_TELE_ROW);
return(0);
}
// For each frame
for (n = telestart, k = 0; n < nrow - FRAME_LEN; n += FRAME_LEN, k++) {
float *pixelv = prow[n];
int j;
// Turn each wedge into a value
for (j = 0; j < 16; j++) {
// Average the middle 6px
wedge[j] = 0.0;
for (int i = 1; i < 7; i++) wedge[j] += teleline[(j * 8) + n + i];
wedge[j] /= 6;
}
// Compute regression on the wedges
rgcomp(wedge, &(regr[k]));
// Read the telemetry values from the middle of the image
if (k == nrow / (2*FRAME_LEN)) {
int l;
// Equalise
for (j = 0; j < 16; j++) tele[j] = rgcal(wedge[j], &(regr[k]));
/* Compare the channel ID wedge to the reference
* wedges, the wedge with the closest match will
* be the channel ID
*/
float min = -1;
for (j = 0; j < 6; j++) {
float df;
df = tele[15] - tele[j];
df *= df;
if (df < min || min == -1) {
channel = j;
min = df;
}
}
// Cs computation, still have no idea what this does
int i;
for (Cs = 0.0, i = 0, j = n; j < n + FRAME_LEN; j++) {
double csline;
for (csline = 0.0, l = 3; l < 43; l++)
csline += pixelv[l + offset - SPC_WIDTH];
csline /= 40.0;
if (csline > 50.0) {
Cs += csline;
i++;
}
}
Cs /= i;
Cs = rgcal(Cs, &(regr[k]));
}
}
nbtele = k;
calibrateBrightness(prow, nrow, offset, width, telestart, regr);
return(channel + 1);
}
// --- Temperature Calibration --- //
#include "satcal.h"
typedef struct {
double Nbb;
double Cs;
double Cb;
int ch;
} tempparam_t;
// IR channel temperature compensation
static void tempcomp(double t[16], int ch, int satnum, tempparam_t *tpr) {
double Tbb, T[4];
double C;
tpr -> ch = ch - 4;
// Compute equivalent T blackbody temperature
for (int n = 0; n < 4; n++) {
float d0, d1, d2;
C = t[9 + n] * 4.0;
d0 = satcal[satnum].d[n][0];
d1 = satcal[satnum].d[n][1];
d2 = satcal[satnum].d[n][2];
T[n] = d0;
T[n] += d1 * C;
C = C * C;
T[n] += d2 * C;
}
Tbb = (T[0] + T[1] + T[2] + T[3]) / 4.0;
Tbb = satcal[satnum].rad[tpr->ch].A + satcal[satnum].rad[tpr->ch].B * Tbb;
// Compute radiance blackbody
C = satcal[satnum].rad[tpr->ch].vc;
tpr->Nbb = c1 * C * C * C / (expm1(c2 * C / Tbb));
// Store count blackbody and space
tpr->Cs = Cs * 4.0;
tpr->Cb = t[14] * 4.0;
}
// IR channel temperature calibration
static double tempcal(float Ce, int satnum, tempparam_t * rgpr) {
double Nl, Nc, Ns, Ne;
double T, vc;
Ns = satcal[satnum].cor[rgpr->ch].Ns;
Nl = Ns + (rgpr->Nbb - Ns) * (rgpr->Cs - Ce * 4.0) / (rgpr->Cs - rgpr->Cb);
Nc = satcal[satnum].cor[rgpr->ch].b[0] +
satcal[satnum].cor[rgpr->ch].b[1] * Nl +
satcal[satnum].cor[rgpr->ch].b[2] * Nl * Nl;
Ne = Nl + Nc;
vc = satcal[satnum].rad[rgpr->ch].vc;
T = c2 * vc / log1p(c1 * vc * vc * vc / Ne);
T = (T - satcal[satnum].rad[rgpr->ch].A) / satcal[satnum].rad[rgpr->ch].B;
// Rescale to 0-255 for -60'C to +40'C
T = (T - 273.15 + 60.0) / 100.0 * 256.0;
return(T);
}
// Temperature calibration wrapper
void temperature(options_t *opts, image_t *img, int offset, int width){
tempparam_t temp;
printf("Temperature... ");
fflush(stdout);
tempcomp(tele, img->chB, opts->satnum - 15, &temp);
for (int y = 0; y < img->nrow; y++) {
float *pixelv = img->prow[y];
for (int x = 0; x < width; x++) {
float pv = tempcal(pixelv[x + offset], opts->satnum - 15, &temp);
pixelv[x + offset] = CLIP(pv, 0, 255);
}
}
printf("Done\n");
}
void distrib(options_t *opts, image_t *img, char *chid) {
int max = 0;
// Options
options_t options;
options.path = opts->path;
// Image options
image_t distrib;
strcpy(distrib.name, img->name);
distrib.nrow = 256;
// Assign memory
for(int i = 0; i < 256; i++)
distrib.prow[i] = (float *) malloc(sizeof(float) * 256);
for(int n = 0; n < img->nrow; n++) {
float *pixelv = img->prow[n];
for(int i = 0; i < CH_WIDTH; i++) {
int y = CLIP((int)pixelv[i + CHA_OFFSET], 0, 255);
int x = CLIP((int)pixelv[i + CHB_OFFSET], 0, 255);
distrib.prow[y][x]++;
if(distrib.prow[y][x] > max)
max = distrib.prow[y][x];
}
}
// Scale to 0-255
for(int x = 0; x < 256; x++)
for(int y = 0; y < 256; y++)
distrib.prow[y][x] = distrib.prow[y][x] / max * 255.0;
extern int ImageOut(options_t *opts, image_t *img, int offset, int width, char *desc, char *chid, char *palette);
ImageOut(&options, &distrib, 0, 256, "Distribution", chid, NULL);
}
extern float quick_select(float arr[], int n);
// Recursive biased median denoise
#define TRIG_LEVEL 40
void denoise(float **prow, int nrow, int offset, int width){
for(int y = 2; y < nrow-2; y++){
for(int x = offset+1; x < offset+width-1; x++){
if(prow[y][x+1] - prow[y][x] > TRIG_LEVEL ||
prow[y][x-1] - prow[y][x] > TRIG_LEVEL ||
prow[y+1][x] - prow[y][x] > TRIG_LEVEL ||
prow[y-1][x] - prow[y][x] > TRIG_LEVEL){
prow[y][x] = quick_select((float[]){
prow[y+2][x-1], prow[y+2][x], prow[y+2][x+1],
prow[y+1][x-1], prow[y+1][x], prow[y+1][x+1],
prow[y-1][x-1], prow[y-1][x], prow[y-1][x+1],
prow[y-2][x-1], prow[y-2][x], prow[y-2][x+1]
}, 12);
}
}
}
}
#undef TRIG_LEVEL