|
- /*
- * This file is part of Aptdec.
- * Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019
- *
- * Aptdec is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <https://www.gnu.org/licenses/>.
- *
- */
-
- #include <stdlib.h>
- #include <stdio.h>
- #include <string.h>
- #include <math.h>
-
- #include "filter.h"
- #include "filtercoeff.h"
-
- // In case your C compiler is so old that Pi hadn't been invented yet
- #ifndef M_PI
- #define M_PI 3.141592653589793
- #endif
-
- // Block sizes
- #define BLKAMP 1024
- #define BLKIN 1024
-
- #define Fc 2400.0
- #define DFc 50.0
- #define PixelLine 2080
- #define Fp (2 * PixelLine)
- #define RSMULT 15
- #define Fi (Fp * RSMULT)
-
- extern int getsample(float *inbuff, int count);
-
- static double Fe;
-
- static double offset = 0.0;
- static double FreqLine = 1.0;
-
- static double FreqOsc;
- static double K1, K2;
-
- // Check the input sample rate and calculate some constants
- int init_dsp(double F) {
- if(F > Fi) return(1);
- if(F < Fp) return(-1);
- Fe = F;
-
- K1 = DFc / Fe;
- K2 = K1 * K1 / 2.0;
- // Number of samples per cycle
- FreqOsc = Fc / Fe;
-
- return(0);
- }
-
- /* Fast phase estimator
- * Calculates the phase angle of a signal from a IQ sample
- */
- static inline double Phase(double I, double Q) {
- double angle, r;
- int s;
-
- if(I == 0.0 && Q == 0.0)
- return(0.0);
-
- if (Q < 0) {
- s = -1;
- Q = -Q;
- } else {
- s = 1;
- }
-
- if (I >= 0) {
- r = (I - Q) / (I + Q);
- angle = 0.25 - 0.25 * r;
- } else {
- r = (I + Q) / (Q - I);
- angle = 0.75 - 0.25 * r;
- }
-
- if(s > 0)
- return(angle);
- else
- return(-angle);
- }
-
- /* Phase locked loop
- * https://en.wikipedia.org/wiki/Phase-locked_loop
- * https://arachnoid.com/phase_locked_loop/
- * https://simple.wikipedia.org/wiki/Phase-locked_loop
- */
- static double pll(double I, double Q) {
- // PLL coefficient
- static double PhaseOsc = 0.0;
- double Io, Qo;
- double Ip, Qp;
- double DPhi;
-
- // Quadrature oscillator / reference
- Io = cos(PhaseOsc);
- Qo = sin(PhaseOsc);
-
- // Phase detector
- Ip = I * Io + Q * Qo;
- Qp = Q * Io - I * Qo;
- DPhi = Phase(Ip, Qp);
-
- // Loop filter
- PhaseOsc += 2.0 * M_PI * (K1 * DPhi + FreqOsc);
- if (PhaseOsc > M_PI)
- PhaseOsc -= 2.0 * M_PI;
- if (PhaseOsc <= -M_PI)
- PhaseOsc += 2.0 * M_PI;
-
- FreqOsc += K2 * DPhi;
- if (FreqOsc > ((Fc + DFc) / Fe))
- FreqOsc = (Fc + DFc) / Fe;
- if (FreqOsc < ((Fc - DFc) / Fe))
- FreqOsc = (Fc - DFc) / Fe;
-
- return(Ip);
- }
-
- // Convert samples into pixels
- static int getamp(double *ampbuff, int count) {
- static float inbuff[BLKIN];
- static int idxin = 0;
- static int nin = 0;
-
- for (int n = 0; n < count; n++) {
- double I, Q;
-
- // Get some more samples when needed
- if (nin < IQFilterLen * 2 + 2) {
- // Number of samples read
- int res;
- memmove(inbuff, &(inbuff[idxin]), nin * sizeof(float));
- idxin = 0;
-
- // Read some samples
- res = getsample(&(inbuff[nin]), BLKIN - nin);
- nin += res;
-
- // Make sure there is enough samples to continue
- if (nin < IQFilterLen * 2 + 2)
- return(n);
- }
-
- // Process read samples into a brightness value
- iqfir(&inbuff[idxin], iqfilter, IQFilterLen, &I, &Q);
- ampbuff[n] = pll(I, Q);
-
- // Increment current sample
- idxin++;
- nin--;
- }
-
- return(count);
- }
-
- // Sub-pixel offsetting + FIR compensation
- int getpixelv(float *pvbuff, int count) {
- // Amplitude buffer
- static double ampbuff[BLKAMP];
- static int nam = 0;
- static int idxam = 0;
-
- double mult;
-
- // Sub-pixel offset
- mult = (double) Fi / Fe * FreqLine;
- int m = RSFilterLen / mult + 1;
-
- for (int n = 0; n < count; n++) {
- int shift;
-
- if (nam < m) {
- int res;
- memmove(ampbuff, &(ampbuff[idxam]), nam * sizeof(double));
- idxam = 0;
- res = getamp(&(ampbuff[nam]), BLKAMP - nam);
- nam += res;
- if (nam < m)
- return(n);
- }
-
- // Gaussian FIR compensation filter
- pvbuff[n] = rsfir(&(ampbuff[idxam]), rsfilter, RSFilterLen, offset, mult) * mult * 256.0;
-
- shift = ((int) floor((RSMULT - offset) / mult)) + 1;
- offset = shift * mult + offset - RSMULT;
-
- idxam += shift;
- nam -= shift;
- }
- return(count);
- }
-
- // Get an entire row of pixels, aligned with sync markers
- double minDoppler = 100;
- int getpixelrow(float *pixelv, int nrow, int *zenith) {
- static float pixels[PixelLine + SyncFilterLen];
- static int npv;
- static int synced = 0;
- static double max = 0.0;
-
- double corr, ecorr, lcorr;
- int res;
-
- // Move the row buffer into the the image buffer
- if (npv > 0)
- memmove(pixelv, pixels, npv * sizeof(float));
-
- // Get the sync line
- if (npv < SyncFilterLen + 2) {
- res = getpixelv(&(pixelv[npv]), SyncFilterLen + 2 - npv);
- npv += res;
- // Exit if there are no pixels left
- if (npv < SyncFilterLen + 2) return(0);
- }
-
- // Calculate the frequency offset
- ecorr = fir(pixelv, Sync, SyncFilterLen);
- corr = fir(&(pixelv[1]), Sync, SyncFilterLen - 1);
- lcorr = fir(&(pixelv[2]), Sync, SyncFilterLen - 2);
- FreqLine = 1.0+((ecorr-lcorr) / corr / PixelLine / 4.0);
-
- // Find the point in which ecorr and lcorr intercept, make sure that it's not too perfect
- if(fabs(lcorr - ecorr) < minDoppler && fabs(lcorr - ecorr) > 1){
- minDoppler = fabs(lcorr - ecorr);
- *zenith = nrow;
- }
-
- // The point in which the pixel offset is recalculated
- if (corr < 0.75 * max) {
- synced = 0;
- FreqLine = 1.0;
- }
- max = corr;
-
- if (synced < 8) {
- int mshift;
-
- if (npv < PixelLine + SyncFilterLen) {
- res = getpixelv(&(pixelv[npv]), PixelLine + SyncFilterLen - npv);
- npv += res;
- if (npv < PixelLine + SyncFilterLen)
- return(0);
- }
-
- // Test every possible position until we get the best result
- mshift = 0;
- for (int shift = 0; shift < PixelLine; shift++) {
- double corr;
-
- corr = fir(&(pixelv[shift + 1]), Sync, SyncFilterLen);
- if (corr > max) {
- mshift = shift;
- max = corr;
- }
- }
-
- // If we are already as aligned as we can get, just continue
- if (mshift == 0) {
- synced++;
- } else {
- memmove(pixelv, &(pixelv[mshift]), (npv - mshift) * sizeof(float));
- npv -= mshift;
- synced = 0;
- FreqLine = 1.0;
- }
- }
-
- // Get the rest of this row
- if (npv < PixelLine) {
- res = getpixelv(&(pixelv[npv]), PixelLine - npv);
- npv += res;
- if (npv < PixelLine)
- return(0);
- }
-
- // Move the sync lines into the output buffer with the calculated offset
- if (npv == PixelLine) {
- npv = 0;
- } else {
- memmove(pixels, &(pixelv[PixelLine]), (npv - PixelLine) * sizeof(float));
- npv -= PixelLine;
- }
-
- return(1);
- }
|