You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

305 lines
7.7 KiB

  1. /*
  2. * This file is part of Aptdec.
  3. * Copyright (c) 2004-2009 Thierry Leconte (F4DWV), Xerbo (xerbo@protonmail.com) 2019
  4. *
  5. * Aptdec is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  17. *
  18. */
  19. #include <stdio.h>
  20. #include <string.h>
  21. #include <sndfile.h>
  22. #include <math.h>
  23. #include "offsets.h"
  24. #include "messages.h"
  25. #define REGORDER 3
  26. typedef struct {
  27. double cf[REGORDER + 1];
  28. } rgparam;
  29. extern void polyreg(const int m, const int n, const double x[], const double y[], double c[]);
  30. // Compute regression
  31. static void rgcomp(double x[16], rgparam * rgpr) {
  32. // { 0.106, 0.215, 0.324, 0.433, 0.542, 0.652, 0.78, 0.87, 0.0 }
  33. const double y[9] = { 31.07, 63.02, 94.96, 126.9, 158.86, 191.1, 228.62, 255.0, 0.0 };
  34. polyreg(REGORDER, 9, x, y, rgpr -> cf);
  35. }
  36. // Convert a value to 0-255 based off the provided regression curve
  37. static double rgcal(float x, rgparam *rgpr) {
  38. double y, p;
  39. int i;
  40. for (i = 0, y = 0.0, p = 1.0; i < REGORDER + 1; i++) {
  41. y += rgpr->cf[i] * p;
  42. p = p * x;
  43. }
  44. return(y);
  45. }
  46. static double tele[16];
  47. static double Cs;
  48. static int nbtele;
  49. // Brightness equalise, including telemetry
  50. void equalise(float **prow, int nrow, int offset, int width, int telestart, rgparam regr[30]){
  51. offset -= SYNC_WIDTH+SPC_WIDTH;
  52. for (int n = 0; n < nrow; n++) {
  53. float *pixelv = prow[n];
  54. for (int i = 0; i < width+SYNC_WIDTH+SPC_WIDTH+TELE_WIDTH; i++) {
  55. float pv = pixelv[i + offset];
  56. // Blend between the calculated regression curves
  57. /* TODO: this can actually make the image look *worse*
  58. * if the signal has a constant input gain.
  59. */
  60. int k, kof;
  61. k = (n - telestart) / FRAME_LEN;
  62. if (k >= nbtele)
  63. k = nbtele - 1;
  64. kof = (n - telestart) % FRAME_LEN;
  65. if (kof < 64) {
  66. if (k < 1) {
  67. pv = rgcal(pv, &(regr[k]));
  68. } else {
  69. pv = rgcal(pv, &(regr[k])) * (64 + kof) / FRAME_LEN +
  70. rgcal(pv, &(regr[k - 1])) * (64 - kof) / FRAME_LEN;
  71. }
  72. } else {
  73. if ((k + 1) >= nbtele) {
  74. pv = rgcal(pv, &(regr[k]));
  75. } else {
  76. pv = rgcal(pv, &(regr[k])) * (192 - kof) / FRAME_LEN +
  77. rgcal(pv, &(regr[k + 1])) * (kof - 64) / FRAME_LEN;
  78. }
  79. }
  80. pv = CLIP(pv, 0, 255);
  81. pixelv[i + offset] = pv;
  82. }
  83. }
  84. }
  85. // Get telemetry data for thermal calibration/equalization
  86. int calibrate(float **prow, int nrow, int offset, int width, int contrastEqualise) {
  87. double teleline[3000];
  88. double wedge[16];
  89. rgparam regr[30];
  90. int n, k;
  91. int mtelestart = 0, telestart;
  92. int channel = -1;
  93. // Calculate average of a row of telemetry
  94. for (n = 0; n < nrow; n++) {
  95. float *pixelv = prow[n];
  96. // Average the center 40px
  97. teleline[n] = 0.0;
  98. for (int i = 3; i < 43; i++) teleline[n] += pixelv[i + offset + width];
  99. teleline[n] /= 40.0;
  100. }
  101. // The minimum rows required to decode a full frame
  102. if (nrow < 192) {
  103. fprintf(stderr, ERR_TELE_ROW);
  104. return(0);
  105. }
  106. /* Wedge 7 is white and 8 is black, which will have the largest
  107. * difference in brightness, this will always be in the center of
  108. * the frame and can thus be used to find the start of the frame
  109. */
  110. float max = 0;
  111. for (n = nrow / 3 - 64; n < 2 * nrow / 3 - 64; n++) {
  112. float df;
  113. // (sum 4px below) / (sum 4px above)
  114. df = (teleline[n - 4] + teleline[n - 3] + teleline[n - 2] + teleline[n - 1]) /
  115. (teleline[n + 0] + teleline[n + 1] + teleline[n + 2] + teleline[n + 3]);
  116. // Find the maximum difference
  117. if (df > max) {
  118. mtelestart = n;
  119. max = df;
  120. }
  121. }
  122. // Find the start of the first frame
  123. telestart = (mtelestart - FRAME_LEN/2) % FRAME_LEN;
  124. // Make sure that theres at least one full frame in the image
  125. if (nrow < telestart + FRAME_LEN) {
  126. fprintf(stderr, ERR_TELE_ROW);
  127. return(0);
  128. }
  129. // For each frame
  130. for (n = telestart, k = 0; n < nrow - FRAME_LEN; n += FRAME_LEN, k++) {
  131. float *pixelv = prow[n];
  132. int j;
  133. // Turn each wedge into a value
  134. for (j = 0; j < 16; j++) {
  135. // Average the middle 6px
  136. wedge[j] = 0.0;
  137. for (int i = 1; i < 7; i++) wedge[j] += teleline[(j * 8) + n + i];
  138. wedge[j] /= 6;
  139. }
  140. // Compute regression on the wedges
  141. rgcomp(wedge, &(regr[k]));
  142. // Read the telemetry values from the middle of the image
  143. if (k == nrow / (2*FRAME_LEN)) {
  144. int l;
  145. // Equalise
  146. for (j = 0; j < 16; j++) tele[j] = rgcal(wedge[j], &(regr[k]));
  147. /* Compare the channel ID wedge to the reference
  148. * wedges, the wedge with the closest match will
  149. * be the channel ID
  150. */
  151. float min = 10000;
  152. for (j = 0; j < 6; j++) {
  153. float df;
  154. df = tele[15] - tele[j];
  155. df *= df;
  156. if (df < min) {
  157. channel = j;
  158. min = df;
  159. }
  160. }
  161. // Cs computation, still have no idea what this does
  162. int i;
  163. for (Cs = 0.0, i = 0, j = n; j < n + FRAME_LEN; j++) {
  164. double csline;
  165. for (csline = 0.0, l = 3; l < 43; l++)
  166. csline += pixelv[l + offset - SPC_WIDTH];
  167. csline /= 40.0;
  168. if (csline > 50.0) {
  169. Cs += csline;
  170. i++;
  171. }
  172. }
  173. Cs /= i;
  174. Cs = rgcal(Cs, &(regr[k]));
  175. }
  176. }
  177. nbtele = k;
  178. if(contrastEqualise) equalise(prow, nrow, offset, width, telestart, regr);
  179. return(channel + 1);
  180. }
  181. // --- Temperature Calibration --- //
  182. extern int satnum;
  183. #include "satcal.h"
  184. typedef struct {
  185. double Nbb;
  186. double Cs;
  187. double Cb;
  188. int ch;
  189. } tempparam;
  190. // IR channel temperature compensation
  191. static void tempcomp(double t[16], int ch, tempparam *tpr) {
  192. double Tbb, T[4];
  193. double C;
  194. tpr -> ch = ch - 4;
  195. // Compute equivalent T blackbody temperature
  196. for (int n = 0; n < 4; n++) {
  197. float d0, d1, d2;
  198. C = t[9 + n] * 4.0;
  199. d0 = satcal[satnum].d[n][0];
  200. d1 = satcal[satnum].d[n][1];
  201. d2 = satcal[satnum].d[n][2];
  202. T[n] = d0;
  203. T[n] += d1 * C;
  204. C = C * C;
  205. T[n] += d2 * C;
  206. }
  207. Tbb = (T[0] + T[1] + T[2] + T[3]) / 4.0;
  208. Tbb = satcal[satnum].rad[tpr->ch].A + satcal[satnum].rad[tpr->ch].B * Tbb;
  209. // Compute radiance blackbody
  210. C = satcal[satnum].rad[tpr->ch].vc;
  211. tpr->Nbb = c1 * C * C * C / (expm1(c2 * C / Tbb));
  212. // Store count blackbody and space
  213. tpr->Cs = Cs * 4.0;
  214. tpr->Cb = t[14] * 4.0;
  215. }
  216. // IR channel temperature calibration
  217. static double tempcal(float Ce, tempparam * rgpr) {
  218. double Nl, Nc, Ns, Ne;
  219. double T, vc;
  220. Ns = satcal[satnum].cor[rgpr->ch].Ns;
  221. Nl = Ns + (rgpr->Nbb - Ns) * (rgpr->Cs - Ce * 4.0) / (rgpr->Cs - rgpr->Cb);
  222. Nc = satcal[satnum].cor[rgpr->ch].b[0] +
  223. satcal[satnum].cor[rgpr->ch].b[1] * Nl +
  224. satcal[satnum].cor[rgpr->ch].b[2] * Nl * Nl;
  225. Ne = Nl + Nc;
  226. vc = satcal[satnum].rad[rgpr->ch].vc;
  227. T = c2 * vc / log1p(c1 * vc * vc * vc / Ne);
  228. T = (T - satcal[satnum].rad[rgpr->ch].A) / satcal[satnum].rad[rgpr->ch].B;
  229. // Rescale to 0-255 for -60'C to +40'C
  230. T = (T - 273.15 + 60.0) / 100.0 * 256.0;
  231. return(T);
  232. }
  233. // Temperature calibration wrapper
  234. void temperature(float **prow, int nrow, int channel, int offset) {
  235. tempparam temp;
  236. printf("Temperature... ");
  237. fflush(stdout);
  238. tempcomp(tele, channel, &temp);
  239. for (int n = 0; n < nrow; n++) {
  240. float *pixelv = prow[n];
  241. for (int i = 0; i < CH_WIDTH; i++) {
  242. float pv = tempcal(pixelv[i + offset], &temp);
  243. pv = CLIP(pv, 0, 255);
  244. pixelv[i + offset] = pv;
  245. }
  246. }
  247. printf("Done\n");
  248. }